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Chapter 1

Introduction

There has been renew of interest for partial di�erential equations posed on networks in recent
years, in particular in relation with Hamilton-Jacobi equations, initiated by the works of Y.
Achdou, F. Camilli, A. Cutrì and N. Tchou [ACCT13] and C. Imbert, R. Monneau and H. Zidani
[IMZ13]. However the study of partial di�erential equations on networks is a much older topic
which can at least be traced back to the work of G. Lumer [Lum80a], [Lum80b] and [Lum84].

One of the recent developments, which was our main motivation for the present work, is
the study of second order mean �eld games of networks initiated by F. Camilli and C. Marchi
in [CM16] in the stationary case and continued by Y. Achdou, M.-K. Dao, O. Ley and N. Tchou
in [ADLT19] for the stationary case and [ADLT20] for the dynamic case. Here the authors study
the mean �eld game system of partial di�erential equations as introduced by J.-M. Lasry and
P.-L. Lions in [LL07], [LL06a] and [LL06b]. See the survey by P. Cardaliaguet and A. Porretta
[CP20] for a general introduction to the theory of mean �eld games.

One could say that three elements are needed in order to adapt the classical theory of mean
�eld games to networks. Of course it is necessary to have a theory of elliptic and parabolic par-
tial di�erential equations in order to write and solve the mean �eld game systems. But one also
needs to be able to de�ne stochastic processes as those are used to model the representative
agent as well as a theory of optimal control in order to derive the system. In this work we are
concerned with the �rst two aspects.

In Chapter 2 we give the main de�nitions and properties regarding networks and function
spaces on networks which will be used in the rest of the text. In particular we prove that these
function spaces enjoy the same properties as their usual analogues. These facts were previously
used without proof in [CM16], [ADLT19] and [ADLT20].

The main chapter of this work is Chapter 3 where we study elliptic equations posed on
networks. Our approach follows the one of [ADLT19] where we slightly changed the func-
tional framework in order to simplify some of the proofs. In particular we were able to prove
the existence and uniqueness result for weak solutions using the standard Lax-Milgram theo-
rem while [ADLT19] relied on the less well-known Banach-Necas-Babuška theorem. This is
achieved through the introduction of some well-chosen weighted spaces, following some ideas
from [ADLT19]. We also systematically consider variable coe�cients where [ADLT19] only
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considered constant second and zeroth order coe�cients. Note that some of the result we ob-
tain here can be seen as special cases of those proved by S. Nicaise in [Nic88] in the context of
rami�ed spaces, which are generalization of networks to higher dimensions. This is the point
of view originally adopted in [CM16]. We summarized the main results for this chapter in
Fig. 3.1.

These results about elliptic equations are then applied in Chapter 4 to study linear parabolic
equations on networks. We follow the semigroup method as presented in [Paz83] and [Hen81].
This approach is di�erent from the one in [ADLT20] where the authors used the Galerkin
method to prove the existence of weak solutions. At the time of writing we only considered
autonomous problems but we believe that extensions to the non-autonomous case are possi-
ble. Again a similar approach was used by J. von Below and S. Nicaise for rami�ed spaces
in [vBN96].

In Chapter 5 we deal with the question of stochastic processes on networks. The existence
of di�usion processes on networks was stated by M. Freidlin and A. Wentzell in [FW93], where
the proof is only sketched, and studied further by M. Freidlin and S.-J. Sheu in [FS00]. Here
we provide a detailed proof for the existence of the process by applying the results on elliptic
problems obtained in Chapter 3. This is a standard approach, see [Tai20] for instance. Next we
prove that this Markov process admits an invariant measure and that this measure is unique
and has a density. These facts were used without proof in [ADLT19].

Finally in Chapter 6 we make a formal derivation of the Hamilton-Jacobi-Bellman equation,
assuming the usual optimal control theory holds in this context, and prove an existence and
uniqueness result for stationary mean �eld game system with non-local coupling. This case
was left as a remark in [ADLT19]. We conclude with an existence and uniqueness theorem for
the parabolic Hamilton-Jacobi-Bellman equation using a standard theorem from the theory of
semigroups.

I conclude this introduction by expressing my gratitude towards Olivier Ley and Francisco
Silva for their supervision and advice in the preparation of this work. I also would like to thank
Mériadec Chuberre and David Lassounon for always taking the time to answer my questions.
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Chapter 2

De�nitions and framework

This chapter presents the basic notions and properties that will be useful in the rest of the text.
We �rst de�ne (�nite) networks and the relevant notions associated to it. We then introduce the
main function spaces that we will need in the rest of the text. Our presentation closely follows
the one in [ADLT19] and [ADLT20] which extends the one in [CM16]. We also provide proofs
for the properties of the function spaces, especially for Sobolev spaces. These properties extend
to networks most of what is true on an bounded interval of R. To our knowledge the details of
the proofs of these properties were never written. This can certainly be explained by the fact
that these properties are very natural.

2.1 Networks

A network Γ is a connected subset of Rd made up of nodes linked by segments. More precisely
consider I and A two subsets of N and let V = {vi ∈ Rd : i ∈ I} be the set of vertices and
E = {Γα ⊂ Rd : α ∈ A} be the set of edges where for each Γα ∈ E there exists vi, vj ∈ V ,
with i 6= j, such that Γα = {θvi + (1− θ)vj : θ ∈ [0, 1]}. We assume the the sets I and A are
�nite subsets of N, which means that the network has a �nite number of vertices and edges,
and that for each pair α, β ∈ A, with α 6= β, we have that Γα ∩Γβ = {vi} if there exists i ∈ I
such that α, β ∈ Ai and Γα ∩ Γβ = ∅ otherwise. This last assumption means that edges may
only intersect at a vertex. Finally we assume that every vertex belongs to an edge, to be precise
for every vi ∈ V there exists Γα ∈ E such that vi ∈ Γα.

For α ∈ A, the length of the edge Γα will be denoted `α ∈ (0,∞) and Γα admits a
parametrization πα : [0, `α]→ Γα de�ned by

(2.1) πα(s) =
1

`α
((`α − s)vi + svj).

Notice that πα is an isometric homeomorphism from [0, `α] to Γα.

Remark 2.1.1. By splitting each edge of the network in two and adding an additional vertex at the
new junction one may always consider a network for which either π−1

α (vi) = 0 or π−1
α (vi) = `α

for every α ∈ Ai and each i ∈ I . More precisely we can parameterize the network in such a way

6



that π−1
α (vi) = 0 if vi is one of the original vertices and π−1

α (vi) = `α if it is one of the added
ones, or conversely. This reparametrization is presented in Fig. 2.1.
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Figure 2.1 – The original network is presented on the left and the reparametrized one with
added vertices on the right. The head of the arrow indicates the direction of the parametriza-
tion.

De�nition 2.1.2. Let x and y be two points in Γ. By a path from x to y we mean an continuous
map

[0, `] 3 s 7→ γ(s) ∈ Γ

such that γ(0) = x and γ(`) = y. Moreover for two vertices vi, vj ∈ V , we say that
(α1, . . . , αp) ∈ Ap induces a path from vi to vj if the function γ de�ned by

[0, `] 3 s 7→ παk

(
s−

k−1∑
n=1

`αn

)
for s ∈

[
k−1∑
n=1

`αn ,

k∑
n=1

`αn

]

de�nes a path from vi to vj . /

Remark 2.1.3. Because Γ is assumed to be connected, for each pair (i, j) ∈ I ×I there exists at
least one �nite sequence (α1, . . . , αp) that induces a path from vi to vj .

De�nition 2.1.4. We de�ne the shortest path metric d on Γ by

d(x, y) =

{
|x− y| if x, y ∈ Γα for some α ∈ A,
inf{α1,...,αp}⊂A

{∑p−1
i=2 `αi + |vi(α1) − x|+ |vi(αp) − y|

}
otherwise ,

where the in�mum is taken over all the sequences (α1, . . . , αp) such that x ∈ Γα1 and y ∈ Γαp
with α1 ∈ Ai(α1), αp ∈ Ai(αp), (α2, . . . , αp−1) which induces a path from vi(α1) to vi(αp) and
|·| is the usual Euclidean norm on Rd. /

Proposition 2.1.5. The metric d is equivalent to the Euclidean metric on Rd restricted to Γ.

Proof. See Proof A.1.1.
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Corollary 2.1.6. The topology of (Γ, d) is equivalent to the topology induced by the Euclidean
metric on Rd on Γ and the space (Γ, d) is thus a compact Polish space1.

To a function u : Γ → R we associate for each α ∈ A the function uα : (0, `α) → R
de�ned by

uα(y) = u ◦ πα(y),

and when it is possible we de�ne its values at the boundaries by{
uα(0) = limy→0+ uα(y),

uα(`α) = limy→`−α uα(y).

Finally, when the previous limits exist, we have

u|Γα(x) =


uα ◦ π−1

α (x) for x ∈ Γα \ V,
uα(0) if x = vi,
uα(`α) if x = vj ,

for x ∈ Γα and Γα = [vi, vj ].
We �nish this section by de�ning the “Lebesgue” measure on Γ. Indeed Γ being a null

measure set for the Lebesgue measure on Rd, we cannot use this measure to de�ne integrals
on Γ. This can however easily be dealt with. We de�ne the Lebesgue measure for every Borel
set A ∈ B(Γ)2 by

L (A) =
∑
α∈A

L α(π−1
α (A ∩ Γα))

where L α is the usual one dimensional Lebesgue measure on [0, `α]. Notice that πα being a
continuous function it is a (B([0, `α],B(Γ))-measurable function and therefore each L α ◦π−1

α

de�nes a measure on Γα and L is a Borel measure on (Γ,B(Γ)). Clearly it is a �nite measure
with total mass L (Γ) =

∑
α∈A `α. For a L -integrable function f we then have∫

Γ
f(x) L (dx) =

∑
α∈A

∫
Γα

f(x) L α(dx) =
∑
α∈A

∫ `α

0
f ◦ πα(y) dy.

In what follows we will simply write∫
Γ
f(x) dx :=

∫
Γ
f(x) L (dx).

Finally all the usual theorems about Lebesgue integrals hold for this measure, see [Bog07, Chap-
ter 2].

1I.e. a complete and separable metric space.
2Note that as a consequence of Corollary 2.1.6 the Borel σ-algebra B(Γ) is the same if we consider the topol-

ogy induced by the Euclidean metric of Rd or the one induced by the metric d.
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2.2 Function spaces

In this section we de�ne and give the main properties of the functions spaces that will be
useful in the study of di�erential equations on networks. However we postpone the proofs
of many of the results to Appendix A.2. The framework is highly inspired by the one used
in [ADLT19], [ADLT20] and [CM16] where these function spaces are used but their properties
are not proved.

As usual we denote C (Γ) the space of continuous real valued functions on Γ. Notice that
as a consequence of Corollary 2.1.6 this space is the same for the topology of (Γ, d) and the
topology induced by the Euclidean metric. It becomes a Banach space when equipped with
the norm ‖u‖C (Γ) = supx∈Γ |u(x)|. In addition it will be convenient to allow functions to be
discontinuous at the junctions but continuous on each edge. To this end we de�ne the space

PC(Γ) =

{
u : Γ→ R :

uα ∈ C (0, `α),
uα can be continuously extended to [0, `α]

, for each α ∈ A
}
.

endowed with the norm of uniform convergence on each edge

‖u‖PC(Γ) = max
α∈A
‖uα‖∞

which also makes it a Banach space. Notice that if u ∈ PC(Γ) the we can de�ne u|Γα for each
α ∈ A and u|Γα ∈ C (Γα), where C (Γα) is the usual space of continuous real valued functions
on Γα equipped with the topology induced by Γ. We clearly have the continuous embedding
C (Γ) ↪→ PC(Γ).

Let u ∈ C (Γ) and α ∈ A, then we can de�ne the derivative of u at x ∈ Γα \ V as a
directional derivative. More precisely let Γα ∈ E whose extremities are the vertices vi and vj .
De�ne the unit vector

eα =
vj − vi
|vj − vi|

.

Then the parametrization (2.1) can also be expressed

(2.2) πα(s) = vi +
s

`α
eα

and in this case πα(0) = vi and πα(`α) = vj . Then for a given x in the interior of Γα we can
consider, when it exists, the directional derivative

Dαu(x) = lim
h→0

u(x+ heα)− u(x)

h
.

Remark 2.2.1. In order to make notations uniform, and following [ADLT19] and [ADLT20], in
what follows we will use the notations ∂v for the usual derivative v′ of a function de�ned and
di�erentiable on an interval of R.
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We see from (2.2) that π−1
α (x) = x ·eα and hence (π−1

α )′(x) = 1 for every x in the interior
of Γα. We now notice that

lim
h→0

u(x+ heα)− u(x)

h
= lim

h→0

uα(π−1
α (x+ heα))− uα(π−1

α (x))

h

= ∂uα(π−1
α (x))(π−1

α )′(x)

= ∂uα(π−1
α (x)).

Hence in what follows we make the identi�cation Dαu(x) = ∂uα(π−1
α (x)), and we will write

∂u(x) = ∂uα(π−1
α (x)), but this is speci�c to the parametrization of the network we de�ned in

(2.1) and (2.2). We de�ne higher order derivatives in the same way and we write

∂ku(x) = ∂kuα(π−1
α (x)) for x ∈ Γ \ V.

As we already mentioned above, the derivatives of u are in general not continuous at vertices.
However we can always de�ne ∂αu(vi) the outward directional derivative of u at vi ∈ V for
each α ∈ Ai in the following way

∂αu(vi) =

{
limh→0+

uα(0)−uα(h)
h if vi = πα(0),

limh→0+
uα(`α)−uα(`α−h)

h if vi = πα(`α).

Notice that if we de�ne

(2.3) ni,α =

{
1 if vi = πα(`α),

−1 if vi = πα(0),

then ∂αu(vi) = ni,α∂uα(π−1
α (vi)).

We can thus de�ne for every integer k ≥ 1 the function space

C k(Γ) =
{
u ∈ C (Γ) : uα ∈ C k([0, `α]), ∀α ∈ A

}
,

as well as
C∞(Γ) =

{
u ∈ C (Γ) : u ∈ C k(Γ), ∀k ≥ 1

}
.

Remark 2.2.2. Contrary to what one may expect we allow the derivatives of a function u ∈
C k(Γ) to be discontinuous at the junctions.

Proposition 2.2.3. For each k ≥ 1 the space C k(Γ) equipped with the norm

‖u‖C k(Γ) =
∑
α∈A

∑
0≤j≤k

‖∂juα‖L∞(0,`α)

is a Banach space.

Proof. See Proof A.2.1.
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In what follows we will often need to extend the standard fact about the behavior of smooth
functions at extremum points (i.e. the derivative cancels and the signed of the second deriva-
tive is prescribed) to the case where the extremum point is a vertex. Indeed the fact that the
functions we consider are not smooth a the junctions imply that the usual result do not hold
in general. However the Kirchho� condition allows retrieve the usual properties.

Proposition 2.2.4. Let vi ∈ V and u ∈ C 2(Γ). Assume u satis�es the Kirchho� condition∑
α∈Ai

pi,α∂αu(vi) = 0.

for some strictly positive real numbers (pi,α)α∈Ai . Suppose also that vi is a local extremum of u.
Then ∂αu(vi) = 0 for every α ∈ Ai and{

∂2uα(π−1
α (vi)) ≤ 0 if vi is a local maximum,

∂2uα(π−1
α (vi)) ≥ 0 if vi is a local minimum.

Proof. We only prove the case where vi is a local maximum of u. The case of a minimum can
be dealt with in a very similar fashion. We also assume that vi = πα(0) for every α ∈ Ai, this
is always possible according to Remark 2.1.1. Again the argument is easily adapted to the case
vi = πα(`α). Note also that the argument is reminiscent of [ADLT19, Lemma 3.3].

The fact that vi is a local maximum of u implies that 0 is a local maximum of uα for every
α ∈ Ai and thus

∂αu(vi) = lim
h→0+

uα(0)− uα(h)

h
≥ 0.

As each pi,α is strictly positive the Kirchho� condition then imposes ∂αu(vi) = 0 for every
α ∈ Ai. Now using the fact that uα ∈ C 2(Γ) we can write

uα(h)− uα(0) = ∂uα(0)h+ ∂2uα(0)
h2

2
+ o(h2).

Using the fact that uα(h) − uα(0) ≤ 0 because 0 is a local maximum of uα and as we just
proved that ∂uα(0) = 0 we obtain

∂2uα(0) ≤ 0.

Remark 2.2.5. The proof in fact shows that the conclusion of Proposition 2.2.4 still holds if we
replace the Kirchho� condition by ∑

α∈Ai

pi,α∂αu(vi) ≤ 0

for local maxima and ∑
α∈Ai

pi,α∂αu(vi) ≥ 0

for local minima.
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We will also need to consider Hölder (resp. Lipschitz) continuous functions on Γ. For each
k ∈ N and θ ∈ (0, 1) (resp. θ = 1) we de�ne

C k,θ(Γ) =
{
u ∈ C k(Γ) : ‖u‖C k,θ(Γ) <∞

}
where

‖u‖C k,θ(Γ) = ‖u‖C k(Γ) + max
α∈A

sup
x,y∈[0,`α]
x 6=y

|∂kuα(x)− ∂kuα(y)|
|x− y|θ

.

Proposition 2.2.6. The space C k,θ(Γ) is a Banach space for each k ∈ N and every θ ∈ (0, 1].

Proof. The proof follows the same argument as for Proposition 2.2.3.

Proposition 2.2.7. There is a compact embedding fromC 0,θ(Γ) intoC 0,γ(Γ) for 0 < γ < θ ≤ 1
and for u ∈ C 0,θ(Γ) we have

‖u‖C 0,γ(Γ) ≤ C‖u‖C 0,θ(Γ).

Proof. See Proof A.2.2.

Having de�ned the Lebesgue measure on Γ in the previous section, we are able to de�ne
for p ∈ [1,∞] the Lebesgue space Lp(Γ) = Lp(Γ,L ) as usual (see [Bog07, Chapter 4] for
instance). Notice that

Lp(Γ) = {u : Γ→ R : u ∈ Lp(0, `α) for every α ∈ A} .

Moreover one can see that ‖u‖Lp(Γ) =
(∑

α∈A ‖uα‖
p
Lp(0,`α)

) 1
p for 1 ≤ p <∞ and ‖u‖L∞(Γ) =

maxα∈A ‖uα‖L∞(0,`α).

Proposition 2.2.8. For every p ∈ [1,∞] the space Lp(Γ) is a Banach space and L2(Γ) is an
Hilbert space for the scalar product

(u, v)L2(Γ) =

∫
Γ
u(x)v(x) dx.

Proof. This can be proved in two ways. Either one can use an argument similar to the one used
in Proposition 2.2.3 by coming back to usual Lebesgue spaces on an interval or one can directly
use the result for abstract measures, see [Bog07, Theorem 4.1.3].

Finally we will also need to work with weakly-di�erentiable functions on Γ.
De�nition 2.2.9. Let u : Γ → R be a function. Assume that for every α ∈ A the usual weak
derivative of uα is a function on (0, `α). Then we de�ne the weak derivative ∂u of u by

∂u(x) = ∂uα(π−1
α (x)) for x ∈ Γα \ V.

/
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This leads us to de�ne Sobolev spaces on Γ.
De�nition 2.2.10. For any integer k ≥ 1 and every p ∈ [1,∞] we de�ne the Sobolev space

W k,p(Γ) =
{
u ∈ C (Γ) : ‖u‖Wk,p(Γ) <∞

}
where

‖u‖Wk,p(Γ) =

‖u‖pLp(Γ) +
k∑
j=1

‖∂ju‖pLp(Γ)

 1
p

for 1 ≤ p <∞,

and

‖u‖Wk,∞(Γ) = ‖u‖L∞(Γ) +

k∑
j=1

‖∂ju‖L∞(Γ).

Occasionally it will be convenient to drop the continuity assumption of the functions at
vertices, therefore we also de�ne the "broken" Sobolev spaces

W k,p
b (Γ) =

{
u ∈ Lp(Γ) : uα ∈W k,p([0, `α]), ∀α ∈ A

}
.

/

Remark 2.2.11. Notice that a function u ∈ C (Γ) belongs toW k,p(Γ) if, and only if, it veri�es
uα ∈W k,p(0, `α) for every α ∈ A.

As usual we will denote Hk(Γ) = W k,2(Γ). In the rest of this section we verify that
the spaces W k,p(Γ) satisfy the main properties we expect from a function space named after
Sergueï L. Sobolev. Most of the proofs rely on the properties satis�ed by usual one dimensional
Sobolev spaces, see [Bre11, Chapter 8].

Proposition 2.2.12. For any k ≥ 1 and every p ∈ [1,∞], the spaceW k,p(Γ) is a Banach space
and Hk(Γ) is an Hilbert space.

Proof. See Proof A.2.3.

Proposition 2.2.13. There is a continuous injection W 1,1(Γ) ↪→ Lq(Γ) for every q ∈ [1,∞]
and the injection is compact for 1 ≤ q <∞.

Proof. See Proof A.2.5.

Proposition 2.2.14. The Sobolev spaceW 1,p(Γ) is a compact subset of C (Γ) for 1 < p ≤ ∞.

Proof. This is the same argument as in Proposition 2.2.13 using the compact embedding

W 1,p(0, `α) ↪→ C ([0, `α]),

see [Bre11, Theorem 8.8].
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Proposition 2.2.15 (Morrey’s inequality). Let u ∈W 1,p(Γ) for 1 < p ≤ ∞. Then u ∈ C 0,θ(Γ)
with 0 < θ ≤ 1− 1

p and
‖u‖C 0,θ(Γ) ≤ C‖u‖W 1,p(Γ).

Furthermore, the embedding is compact for 0 < θ < 1− 1
p .

Proof. See Proof A.2.6.
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Chapter 3

Second order linear elliptic
equations

This section is dedicated to the study of a general class of linear elliptic partial di�erential
equations posed on networks. The class of equations which we study is similar to the one that is
considered in the corresponding chapter of [Eva10]. Our goal is to generalize results presented
in [ADLT19] and [CM16] which also greatly in�uenced the presentation. In [CM16] special
cases of the results we present here are used without proof and the authors refer to [Nic88]
where one can indeed �nd result similar to ours regarding weak solutions but for more general
rami�ed spaces. In [ADLT19] the authors provide proofs specialized on networks but only for
second and zeroth order terms which are constant on each edge. We extend here this approach
to variable coe�cients. We were also able to slightly simplify some of the proofs by a change
of function space.

Note that technically the problem consists of a coupled system of di�erential equations
posed on intervals. As everything is one dimensional the name partial di�erential equation
is not very accurate however the tools we use in the study of the problem clearly come from
partial di�erential equations which is the reason for this choice of terminology. To �x notations
we consider the di�erential operator L de�ned by

(3.1) Lu(x) = −a(x)∂2u(x) + b(x)∂u(x) + c(x)u(x) for x ∈ Γ \ V,

where we assume at least a, b, c ∈ L∞(Γ). Moreover for every α ∈ Awe de�ne the di�erential
operator Lα by

(3.2) Lαv(y) = −aα(y)∂2v(y) + bα(y)∂v(y) + cα(y)v(y) for y ∈ (0, `α),

for any function v ∈ C 2(0, `α). The operator L will be called (uniformly) elliptic if there exists
a positive constant ω such that a(x) ≥ ω > 0 for every x ∈ Γ \ V .

The main results obtained in this section are summarized in Fig. 3.1.
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σ ∈W 1,∞
b (Γ), b, c ∈ L∞(Γ), f ∈ H−1(Γ)

∃λ0 s.t. c ≥ λ0 ⇒ (B coercive and ∃!u ∈ H1(Γ) weak solution)

b, c ∈ PC(Γ), c ≥ 0 and ∃x0 ∈ Γ \ V s.t. c(x0) > 0

∃!u ∈ H1(Γ) weak solutionf ∈ L2(Γ)

b, c, f ∈ PC(Γ)

u ∈ H2(Γ) u ∈ C 2(Γ)

bα, cα, fα ∈ C 0,σ(Γ)c|Γα
(vi) > 0, f ≥ 0

u ≥ 0 u ∈ C 2,σ(Γ)

Lax-Milgram

Fredholm Alternative

Figure 3.1 – Linear elliptic theory on networks. Assumptions are presented in grey boxes and
results in green ones.

3.1 Maximum principles

In this section we extend the standard maximum principles for elliptic equations on an interval.
Our presentation in strongly in�uenced by the ones in [Eva10] and [GT01].

Theorem 3.1.1 (Weak maximum principle). Consider a function u ∈ C 2(Γ) and assume c = 0
on Γ.

1. Suppose
Lu ≤ 0 on Γ \ V,

then we have
max
x∈Γ

u(x) = max
x∈V

u(x).

2. Suppose
Lu ≥ 0 on Γ \ V,

then we have
min
x∈Γ

u(x) = min
x∈V

u(x).

Proof. See Proof A.3.1.

Corollary 3.1.2. Consider a function u ∈ C 2(Γ) and assume c ≥ 0 on Γ.
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1. Suppose
Lu ≤ 0 in Γ \ V,

then we have
max
x∈Γ

u(x) ≤ max
x∈V

u+(x).

2. Suppose
Lu ≥ 0 in Γ \ V,

then we have
min
x∈Γ

u(x) ≥ min
x∈V

u−(x).

Proof. Use the same argument as in Theorem 3.1.1, using the analogue result in intervals (
[Eva10, Theorem 2 p.348], [GT01, Corollary 3.2]).

Theorem 3.1.3. Assume c ≥ 0. Let u ∈ C 2(Γ) be such that

Lu = 0

and satis�es the Kirchho� condition∑
α∈Ai

pi,α∂αu(vi) = 0 ∀i ∈ I

where (pi,α)α∈Ai is a family of positive real numbers for each i ∈ I . Then u is constant. Further-
more if there exists some x0 ∈ Γ \ V such c(x0) > 0, then u = 0.

Proof. First notice that if we replace u by−u the function stills satis�es the assumptions of the
theorem. Therefore, by the weak maximum principle 3.1.2, we may assume that u achieves a
nonnegative maximum at some vertex vi ∈ V . We now claim that u|Γα is constant for every
α ∈ Ai. Indeed if it is not the case for some α ∈ Ai, then as Lαuα = 0 we may apply the usual
strong maximum principle (see [GT01, Theorem 3.5]) to deduce that u|Γα(vi) > u|Γα(x) for
every x in the interior of Γα. Then Hopf’s lemma (see [GT01, Lemma 3.4]) implies ∂αu(vi) > 0
and contradicts Proposition 2.2.4 which states that ∂αu(vi) = 0. Hence u|Γα must be constant
for every α ∈ Ai and the constants are identical by continuity of u on Γ. Now for every j ∈ I
such that vj ∈ Γα for some α ∈ Ai we have u(vj) = maxx∈Γ u(x) and therefore we can
propagate the argument across the network.

The �nal statement comes from the fact that zero is the only constant satisfying Lu = 0
when c(x0) > 0 for some x0 ∈ Γ \ V .

Remark 3.1.4. In the case where c = 0 a more elementary proof of Theorem 3.1.3 is given
in [ADLT19, Lemma 2.5].
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3.2 Problems with Kirchho� transmission condition

Let for each i ∈ I let (γi,α)α∈A be positive real numbers. In this section we study the well-
posedness of the following problem

(EK )


−σ2(x)∂2u(x) + b(x)∂u(x) + c(x)u(x) = f(x) x ∈ Γ \ V,∑

α∈Ai γi,ασ|Γα(vi)∂αu(vi) = 0 ∀i ∈ I,
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, i ∈ I.

The condition in the second line is called the Kirchho� transmission condition.
We begin with a preliminary remark. Consider u, v ∈ C 2(Γ) and we compute using inte-

gration by parts

(−∂2u, v)L2(Γ) =

∫
Γ
−∂2u(x)v(x) dx =

∑
α∈A

∫ `α

0
−∂2uα(x)vα(x) dx

=
∑
α∈A

∫ `α

0
∂uα(x)∂vα(x) dx−

∑
i∈I

∑
α∈Ai

[∂uα(x)vα(x)]`α0

=

∫
Γ
∂u(x)∂v(x) dx+

∑
i∈I

v(vi)
∑
α∈Ai

∂αu(vi).

Notice that the Kirchho� condition almost appears on the last line. In order to obtain it we need
a way to make the coe�cients (γi,α)α∈Ai appear in the computation. This will be achieved with
the following function.
De�nition 3.2.1. Let the functions ψ ∈ PC(Γ) be de�ned as follows :{

ψα is a�ne on (0, `α),

ψ|Γα(vi) = γi,α if α ∈ Ai.

/

Note that the function ψ is positive, bounded and only depends on the Kirchho� condition.
Then we obtain with the same computation

(∂2u, vψ)L2(Γ) =

∫
Γ
∂u(x)∂(v(x)ψ(x)) dx+

∑
i∈I

v(vi)
∑
α∈Ai

γi,α∂αu(vi).

This leads us to consider the following weighted spaces

Lp(Γ;ψ) =

{
u : Γ→ R : ‖u‖Lp(Γ;ψ) =

(∫
γ
|u(x)|pψ(x) dx

) 1
p

<∞

}

and the space L2(Γ;ψ) is naturally endowed with the following inner product

(u, v)L2(Γ;ψ) =

∫
Γ
u(x)v(x)ψ(x) dx.

18



Because ψ is a positive bounded function we in fact have Lp(Γ;ψ) = Lp(Γ), the norms are
equivalent and we denote cψ and Cψ two positive constants such that

cψ‖u‖Lp(Γ;ψ) ≤ ‖u‖Lp(Γ) ≤ Cψ‖u‖Lp(Γ;ψ).

In particularLp(Γ;ψ) are Banach spaces for 1 ≤ p ≤ ∞ andL2(Γ;ψ) is an Hilbert space. Anal-
ogously we can de�ne the weighted Sobolev spaces W k,p(Γ;ψ) which are the spaces W k,p(Γ)
using norms in Lp(Γ;ψ) instead of Lp(Γ) for the weak derivatives. In particular Hk(Γ;ψ) is
an Hilbert space provided with the inner product

(u, v)Hk(Γ;ψ) =
∑

0≤l≤k
(∂lu, ∂lv)L2(Γ;ψ).

De�nition 3.2.2. A classical solution of (EK ) is a function u ∈ C 2(Γ) verifying

Lu(x) = f(x) ∀x ∈ Γ \ V

pointwise and such that ∑
α∈Ai

γi,ασ
2
|Γα(vi)∂αu(vi) = 0 ∀i ∈ I.

/

We now derive the weak formulation of (EK ). In what follows it will be convenient to write
the problem in divergence form. Hence, assuming σ is regular enough we write

Lu(x) = −∂(a(x)∂u(x)) + b̃(x)∂u(x) + c(x)u(x) for every x ∈ Γ \ V.

where a = σ2 and b̃ = b+ 2σ∂σ. Let u be a classical solution of (EK ), multiplying by vψ, with
v ∈ C 2(Γ), in (EK ) and integrating by parts we get

(f, v)L2(Γ;ψ) = (Lu, v)L2(Γ;ψ) =

∫
Γ
−∂(a∂u)vψ + b̃∂uvψ + cuvψ dx

=

∫
Γ
a∂u∂(vψ) + b̃∂uvψ + cuvψ dx+

∑
i∈I

v(vi)
∑
α∈Ai

γi,ασ
2
|Γα(vi)∂αu(vi)

=

∫
Γ
a∂u∂(vψ) + b̃∂uvψ + cuvψ dx

where we used the fact that u satis�es the Kirchho� condition to obtain the last line. Hence u
solves

(3.3) B(u, v) = (f, v)L2(Γ;ψ) for every v ∈ H1(Γ),

where B is the bilinear form de�ned on H1(Γ)×H1(Γ) by

(3.4) B(u, v) =

∫
Γ
a∂u∂(vψ) + b̃∂uvψ + cuvψdx.
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Conversely assume that u ∈ C 2(Γ) solves (3.3). Then going backward in the computation
above gives

(f, v)L2(Γ;ψ) =

∫
Γ
−∂(a∂u)vψ + b̃∂uvψ + cuvψ dx−

∑
i∈I

v(vi)
∑
α∈Ai

γi,ασ
2
|Γα(vi)∂αu(vi).

Using test functions v ∈ H1(Γ) that are compactly supported in Γα we deduce that

−σ2(x)∂2u(x) + b(x)∂u(x) + c(x)u(x) = f(x) for almost every x ∈ Γα \ V

and the regularity of u implies that it is in fact the case everywhere on Γα \ V , this is the �rst
line in (EK ). Next for ε > 0 small enough and i ∈ I we can choose test functions viε ∈ H1(Γ)
of the following form : 

viε,α is piecewise a�ne on [0, `α],

viε(vj) = δi,j ,

supp viε ⊂ B(vi, ε).

Notice that they can be chosen to lie in a bounded subset of L∞(Γ;ψ) and an application of
the dominated convergence theorem gives

lim
ε→0

(f, viε)L2(Γ;ψ) = 0,

lim
ε→0

∫
Γ
(−∂(a∂u) + b̃∂u+ cu)viεψ dx = 0

and thus we obtain
0 =

∑
α∈Ai

γi,ασ
2
|Γα(vi)∂αu(vi),

when ε tends to 0 which is the second line in (EK ). Finally the third line of (EK ) is implied by
u ∈ H1(Γ). This shows that u is then a solution of (EK ).

We are able to state the general weak formulation of (EK ) :

(E ′) Given f ∈ H−1(Γ) �nd u ∈ H1(Γ) such that
B(u, v) = 〈f, v〉H−1,H1 for every v ∈ H1(Γ),

whereB is the bilinear form de�ned in (3.4) andH−1(Γ) is the dual space ofH1(Γ). A function
satisfying (E ′) is called a weak solution of (EK ).

In order to solve (E ′) we make the following assumptions on the coe�cients σ, b and c

(H1) 0 < ω ≤ inf
x∈Γ\V

a(x) = inf
x∈Γ\V

σ2(x)

for some constant ω,

(H2) b, c ∈ L∞(Γ), σ ∈W 1,∞(Γα) for every α ∈ A.
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And �nally

(H3) 0 < λ ≤ inf
x∈Γ\V

c(x),

for some constant λ.
The following result generalizes the �rst step in the proof of [ADLT19, Lemma 2.3]. This

can also be seen as a special case of [Nic88, Theorem 2.2] proved in the context of rami�ed
spaces.

Theorem 3.2.3. There exists λ0 > 0 such that for every λ ≥ λ0 and under assumptions (H1),
(H2) and (H3) the bilinear formB is coercive. In particular the problem (E ′) has a unique solution
u ∈ H1(Γ) for every f ∈ H−1(Γ). Moreover u satis�es ‖u‖H1(Γ) ≤ C‖f‖H−1 for some positive
constant C .

Proof. Our proof use follows the one of [ADLT19, Lemma 2.3] with a slightly di�erent func-
tional framework. Let u ∈ H1(Γ;ψ). We have

B(u, u) =

∫
Γ
a∂u∂(uψ) + b̃∂u(uψ) + c|u|2ψ dx

=

∫
Γ
a|∂u|2ψ + c|u|2ψ + (u∂u)(a∂ψ + b̃ψ) dx

≥ ω‖∂u‖2L2(Γ;ψ) + λ‖u‖2L2(Γ;ψ) − (‖a∂ψ‖L∞(Γ) + ‖b̃‖L∞(Γ;ψ))

∫
Γ
|u∂u| dx.

Let ε > 0, using Young’s inequality we have∫
Γ
|u∂u| ≤ 1

2ε
‖u‖2L2(Γ) +

ε

2
‖∂u‖2L2(Γ)

≤
Cψ
2ε
‖u‖2L2(Γ;ψ) +

εCψ
2
‖∂u‖2L2(Γ;ψ).

Thus, denoting K = ‖a∂ψ‖L∞(Γ) + ‖b̃‖L∞(Γ;ψ), we have obtained

B(u, u) ≥
(
λ−

KCψ
2ε

)
‖u‖2L2(Γ;ψ) +

(
ω −

εKCψ
2

)
‖∂u‖2L2(Γ;ψ).

Now we can choose ε small enough in order to have(
ω −

εKCψ
2

)
> 0

and then λ large enough to also have(
λ−

KCψ
2ε

)
> 0.
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We have obtained B(u, u) ≥ C‖u‖2H1(Γ;ψ). We can now apply the Lax-Milgram theorem and
there exists a unique solution u ∈ H1(Γ;ψ), with also u ∈ H1(Γ) because of the equivalence
of the norms, to (E ′). Moreover we have

C‖u‖2H1(Γ;ψ) ≤ B(u, u) ≤ C ′‖f‖H−1‖u‖H1(Γ;ψ),

and hence
‖u‖H1(Γ) ≤

C ′Cψ
C
‖f‖H−1 .

Remark 3.2.4. The above result remains true if we only assume a, b̃ ∈ L∞(Γ) in the case where
we only consider di�erential operators in divergence form.

Let us now recall some facts about Hölder continuous functions on a bounded interval.

Lemma 3.2.5. Let I be a bounded interval of R, 0 < θ, γ ≤ 1 be real numbers and u ∈ C 0,θ(I)
and v ∈ C 0,γ(I) be functions. Then

1. the function u+ v belongs to C 0,η(I) where η = min{θ, γ};

2. the function uv belongs to C 0,η(I) where η = min{θ, γ};

3. if u ≥ k > 0 for some constant k then 1
u ∈ C 0,θ(I).

Proof. See Proof A.3.2.

Proposition 3.2.6 (Regularity of the solution). In addition to (H1) and (H2) assume f ∈ L2(Γ)
and u ∈ H1(Γ) is a weak solution of (E ′) with ‖u‖H1(Γ) ≤ K‖f‖L2(Γ). Then u ∈ H2(Γ) and
there exists a constant C such that ‖u‖H2(Γ) ≤ C‖f‖L2(Γ).

Moreover if b, c, f ∈ PC(Γ) then u belongs to C 2(Γ) and is a classical solution of (EK ) with

‖u‖C 2(Γ) ≤ C‖f‖L∞(Γ).

Finally if bα, cα, fα ∈ C 0,θ([0, `α]), for every α ∈ A where 0 < θ ≤ 1 are real numbers.
Then u ∈ C 2,θ(Γ) and

‖u‖C 2,θ(Γ) ≤ C max
α∈A
‖fα‖C 0,θ([0,`α]).

Proof. We already know that u ∈ C (Γ) and

(3.5) ∂2u =
b∂u+ cu− f

σ2

in the sense of distributions inside each Γα \ V . Therefore ∂2u ∈ L2(Γ). This means that
u ∈ H2(Γ).

Assume now that b, c, f ∈ PC(Γ). We already know that u ∈ H2(Γ) which implies
that ∂u ∈ PC(Γ) by standard Sobolev injections (see [Bre11, Theorem 8.8]) and there exists
constants C ′α such that ‖uα‖C 1([0,`α]) ≤ C ′α‖f‖L2(Γ). Using (3.5) one more time with the
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additional assumptions on the regularity of the coe�cients we get ∂2u ∈ PC(Γ) which proves
that u ∈ C 2(Γ) and there exists a constant C ′ such that

‖u‖C 2(Γ) ≤ C ′
(
‖f‖L2(Γ) + ‖f‖L∞(Γ)

)
≤ C̃ ′‖f‖L∞(Γ).

Finally in the case where bα, cα, fα ∈ C 0,θ([0, `α]) for every α ∈ A the previous case holds
and hence u ∈ C 2(Γ) with ‖u‖C 2(Γ) ≤ ‖f‖L∞(Γ). In particular we have uα ∈ C 1,1([0, `α])

and the same argument in conjunction with Lemma 3.2.5 leads to ∂2uα ∈ C 0,θ([0, `α]). One
can see that ‖Fα‖C 0,θ([0,`α]) ≤ C ′α‖fα‖C 0,θ([0,`α]) for every α ∈ A which then implies that

‖u‖C 0,θ(Γ) ≤ C̃ max
α∈A
‖fα‖C 0,θ([0,`α]).

Remark 3.2.7. The proof of these regularity estimates is made much simpler by the fact that the
problem is fundamentally one dimensional.

Lemma 3.2.8. In addition to (H1), (H2) assume b, c ∈ PC(Γ), c ≥ 0 and c(x0) > 0 for some
x0 ∈ Γ \ V . Then the function u = 0 is the only (weak) solution to the homogeneous problem

(EKh)


−σ2(x)∂2u(x) + b(x)∂u(x) + c(x)u(x) = 0 x ∈ Γα \ V,∑

α∈Ai γi,ασ|Γα(vi)∂αu(vi) = 0 ∀i ∈ I,
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, i ∈ I.

Furthermore if c = 0, the only possible solutions are constants.

Proof. By the same argument as for Proposition 3.2.6 we have that any weak solution of the
inhomogeneous problem is in fact a classical solution. Then the result is a direct consequence
of Theorem 3.1.3.

We now state the general existence and uniqueness theorem for weak solutions of the
elliptic problem. This is a special case the result for rami�ed spaces proved in [Nic88, Theorem
2.2].

Theorem 3.2.9. In addition to (H1), (H2) assume b, c ∈ PC(Γ), c ≥ 0 and c(x0) > 0 for
some x0 ∈ Γ \ V . Then for any f ∈ H−1(Γ), there exists a unique u ∈ H1(Γ) solution of (E ′).
Moreover there exists a constant C > 0 such that ‖u‖H1(Γ) ≤ C‖f‖H−1 .

Proof. The proof is reminiscent of [ADLT19, Lemma 2.3] and [Eva10, Theorem 4 p.323] and is
presented in Proof A.3.3.

Proposition 3.2.10. In addition to (H1), (H2) assume b, c, f ∈ PC(Γ), c ≥ 0 and c > 0 in a
neighborhood of vi for every i ∈ I . Then if f is nonnegative on Γ then the solution u of (EK ) is
also non-negative on Γ.

Proof. The proof is inspired by an argument made in [ADLT19, Lemma 3.3] and postponed to
Proof A.3.4.
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3.3 A dual equation

The purpose of this section is to study the following problem

(3.6)


−∂ (a∂w) + ∂ (bw) = 0, on Γ \ V,
w|Γα (vi)
γi,α

=
w|Γβ (vi)

γi,β
, ∀α, β ∈ Ai, ∀i ∈ I,∑

α∈Ai a|Γα∂αw|Γα(vi)− ni,αw|Γα(vi)a|Γα(vi) = 0 ∀i ∈ I,

where we assume a, b ∈ PC(Γ) with a ≥ ω > 0, γi,α ∈ (0,+∞) for every α ∈ Ai and
i ∈ I . The motivation for the study of this problem is the stationary Fokker-Plank-Kolmogorov
equation which will be derived in Chapter 5.

For this, following [ADLT19], we will use the following function space

W =

{
w ∈ H1

b (Γ) :
w|Γα(vi)
γi,α

=
w|Γβ (vi)

γi,β
, ∀α, β ∈ Ai, ∀i ∈ I

}
.

It becomes an Hilbert space when provided with the inner product

(w, v)W = (w, v)L2(Γ) + (∂w, ∂v)L2(Γ).

In order to derive the weak formulation of (3.6) we multiply the equation by v ∈ H1(Γ)
and integrate over Γ, assuming that w ∈ W with wα ∈ C 1([0, `α]) for every α ∈ A is a
solution of the problem

0 =

∫
Γ
−∂ (a∂w) v + ∂ (bw) v dx

=
∑
α∈A

[−aα∂wαvα + bαwαvα]`α0 +

∫
Γ
a∂w∂v − bw∂v dx

=
∑
i∈I

v(vi)

∑
α∈Ai

ni,αb|Γα(vi)w|Γα(vi)− a|Γα(vi)∂αw(vi)

+

∫
Γ
a∂w∂v − bw∂v dx

=

∫
Γ
a∂w∂v − bw∂v dx.

Now consider the function φ ∈ PC(Γ) satisfying

(3.7)
{
φα is a�ne on [0, `α] for every α ∈ A,
φ|Γα(vi) = 1

γi,α
∀α ∈ Ai, ∀i ∈ I,

and notice that for every w ∈W the function v = wφ belongs to H1(Γ). Then if we write

L?w = −∂(a∂w) + ∂(bw)

the computation above can be summarized by

(3.8) (L?w, v)L2(Γ;φ) = B(w, v) = 0
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for every v ∈W where B is the continuous bilinear form de�ned on W ×W by

(3.9) B(w, v) =

∫
Γ
a∂w∂(vφ)− bw∂(vφ).

Conversely ifw ∈W is such that (3.8) holds for every v ∈W one can prove that ifw is smooth
enough, choosing the right test functions, then if is a solution of (3.6).

We de�ne Wφ to be the function space W provided with the equivalent inner product

(w, v)Wφ
= (w, v)L2(Γ;φ) + (∂w, ∂v)L2(Γ;φ).

Proposition 3.3.1. There exists λ0 > 0 such that for every λ ≥ λ0 the bilinear form

Wφ ×Wφ 3 (w, v) 7→ Bλ(w, v) = B(w, v) + λ(w, v)L2(Γ;φ)

is coercive and continuous. In particular there exists a unique weak solutionw ∈W to the problem

(3.10)


−∂ (a∂w) + ∂ (bw) + λw = h, on Γ \ V,
w|Γα (vi)
γi,α

=
w|Γβ (vi)

γi,β
, ∀α, β ∈ Ai, ∀i ∈ I,∑

α∈Ai a|Γα∂αw|Γα(vi)− ni,αw|Γα(vi)a|Γα(vi) = 0 ∀i ∈ I,

for every λ ≥ λ0 and h ∈ L2(Γ). Furthermore the following estimate holds

‖w‖W ≤ C‖h‖L2(Γ).

Proof. The proof follows the same lines as the one for Theorem 3.2.3 (see also [ADLT19, The-
orem 2.7]) and can be found in Proof A.3.5.

We now come to the main result of this section.

Theorem 3.3.2. There exists a unique weak solution w ∈W to (3.6) such that w is nonnegative
and ∫

Γ
w dx = 1.

Proof. Our proof is mostly identical to the one of [ADLT19, Theorem 2.7] and we hence post-
pone it to Proof A.3.6.

From the usual Sobolev inequalities we know that the solutionw of (3.6) belongs toPC(Γ).
Moreover the fact that w satis�es

−∂ (a∂w) + ∂ (bw) = 0, on Γ \ V,

in the sense of distributions implies that

−aα∂wα + bαwα = cα
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for some constant cα ∈ R for every α ∈ A (see [H0̈3, Theorem 3.1.4]). Therefore we have
wα ∈ C 1([0, `α]) for every α ∈ A. It will we convenient to introduce the following function
space

W =
{
w ∈W : wα ∈ C 1([0, `α]) for every α ∈ A

}
.

In particular the solution w satis�es the transmission condition in the classical sense. We thus
have the following regularity result.

Proposition 3.3.3. The weak solution w of (3.6) obtained in Theorem 3.3.2 belongs toW . Fur-
thermore if b ∈W 1,∞

b (Γ) then the solution belongs toW ∩H2
b (Γ).
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Chapter 4

Second order linear parabolic
equations

Our main goal in this chapter is to study the well-posedness of linear parabolic equations on
networks with Kirchho� transmission conditions. That is problems of the form

(4.1)


∂tu− σ2∂2

xu+ b∂xu+ cu = f ∀t ∈ (0, T ), x ∈ Γ \ V,∑
α∈Ai γi,ασ

2
|Γα(vi)∂αu(t, vi) = 0 ∀i ∈ I, ∀t ∈ (0, T ),

u|Γα(t, vi) = u|Γβ (t, vi) ∀α, β ∈ Ai,∀i ∈ I, ∀t ∈ (0, T ),

u(0, ·) = u0.

To this end we apply the theory of semigroups of bounded linear operators (we recall the
necessary facts about semigroups in Appendix B) to prove the well-posedness of the problem
in L2(Γ) in the case where the coe�cients σ, b and c are independent of time. In this we are
strongly inspired by [Paz83, Section 7.2] and [Eva10, Section 7.1]. Note that similar results on
rami�ed spaces were proved in [vBN96]. See also [Mug14] for semigroups on networks. Weak
solutions for linear parabolic problems were obtained in [ADLT20] using the Galerkin method.
We show how our approach also allows to build weak solutions of the problem. Finally see
[vB88] for another approach to classical solutions of linear parabolic equations on networks.

We end this introduction with a remark which is often useful in the context of evolution
equations. Let u : I × Γ → R be a function where I is an interval of R+ and assume that
for every t ∈ I then function u(t, ·) belong to a function space X , which we may assume is a
Banach space. We can then identify the function u with

u : I 3 t 7→ u(t) = u(t, ·) ∈ X.

With this point of view we may interpret (4.1), if we forget the Kirchho� condition for now, as
a Cauchy problem in the Banach space X

(4.2)
{
u′(t) + Lu(t) = f(t),

u(0) = u0.
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σ ∈W 1,∞
b (Γ), b, c ∈ L∞(Γ)

∃λ0 s.t. ∀λ ≥ λ0 (λI + L) is invertible and ‖Rλ‖ ≤ 1
λ−λ0

, in L2(Γ;ψ)

D(L) dense in L2(Γ)L is closed

Hille-Yosida

−L is the generator of a strongly continuous semigroup on L2(Γ, ψ)

−L is the generator of a strongly continuous semigroup on L2(Γ)

Figure 4.1 – Main steps of the proof of Theorem 4.1.4.

where L is a linear operator on X with domain D(L). In what follows we will write ∂tu(t, ·)
to mean u′(t) and Lu(t, ·) for Lu(t). This identi�cation leads us to considers functions spaces
for functions u : I → X such as L2((0, T ), H1(Γ)). The reader can refer to [Eva10, Section
5.9.2] or [LM72, Chapter 1] for precise de�nitions and properties of these function spaces.

4.1 Existence of a strongly continuous semigroup andwell-posedness
for regular initial data

Let L = −σ2∂2
x + b∂x + c be an elliptic di�erential operator on Γ (see Chapter 3). Our goal

here is to study parabolic equations of the form

(PK )


∂tu(t, x) + Lu(t, x) = f(t, x) for t ∈ (0, T ), x ∈ Γ \ V,∑

α∈Ai γi,ασ
2
|Γα(vi)∂αu(t, vi) = 0 ∀i ∈ I for every t ∈ (0, T ),

u|Γα(t, vi) = u|Γβ (t, vi) ∀α, β ∈ Ai,∀i ∈ I for every t ∈ (0, T ),

u(0, ·) = u0.

We proceed by �rst showing that−L is the in�nitesimal generator of a strongly continuous
semiroup on L2(Γ). The scheme of the proof is very close to the proof in the case of uniformly
elliptic operators on smooth domains in Rd and is presented in Fig. 4.1. In this chapter we
suppose that σ, b and c are independent of the time variable. We also assume σ|Γα ∈W 1,∞(Γα)
for every α ∈ A and is far from zero, i.e. σ2 ≥ ω > 0 for some positive constant ω. We also
suppose b, c ∈ L∞(Γ) and f, u0 ∈ L2(Γ).

Recall from Section 3.2 that to the elliptic di�erential operator L, which can be written in
divergence form

Lu = −∂(a∂u) + b̃∂u+ cu,
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with Kirchho� transmission condition we can associate a bilinear form B de�ned on H1(Γ)×
H1(Γ) by

(4.3) B(u, v) =

∫
Γ
a(x)∂u∂(vψ) + b̃∂uvψ + cuvψ dx.

In what follows we consider the following domain for L :

D(L) =

u ∈ H2(Γ) :
∑
α∈Ai

γi,ασ
2
|Γα(vi)∂αu(vi) = 0 ∀i ∈ I

 .

Recall also that we consider the weighted space L2(Γ;ψ) equipped with the following inner
product

(u, v)L2(Γ;ψ) =

∫
Γ
u(x)v(x)ψ(x) dx

which is equivalent to the usual inner product on L2(Γ) and we have for every u, v ∈ D(L)

B(u, v) = (u, v)L2(Γ;ψ).

De�nition 4.1.1. A semigroup solution of (PK ) is a function

u ∈ C 1((0, T ), L2(Γ)) ∩ C ((0, T ), D(L)) ∩ C ([0, T ], L2(Γ))

satisfying {
∂tu(t, ·) + Lu(t, ·) = f(t, ·) ∀t ∈ (0, T ),

u(0, ·) = u0,

in the sense of di�erential equations in L2(Γ). /

Lemma 4.1.2. The domain D(L) is dense in L2(Γ;ψ).

Proof. See Proof A.4.1.

Lemma 4.1.3. The di�erential operator L is closed in L2(Γ;ψ).

Proof. See Proof A.4.2.

We come to the main result of this section.

Theorem 4.1.4. There exists a positive constant λ0 such that −L is the in�nitesimal generator
of a strongly continuous semigroup (Tt)t≥0 on L2(Γ) satisfying

‖Tt‖L (L2(Γ)) ≤ Ceλ0t.
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Proof. We follow the argument from [Eva10, Theorem 5 p.444].From Theorem 3.2.3 we know
that there exists a positive constant λ0 such that the bilinear form

B̂(u, v) = B(u, v) + λ0(u, v)L2(Γ;ψ)

is coercive on H1(Γ)×H1(Γ). In particular this implies that

(4.4) − λ0‖u‖2L2(Γ;ψ) ≤ C‖u‖
2
H1(Γ) − λ0‖u‖2L2(Γ;ψ) ≤ B(u, u).

In this case Theorem 3.2.3 and Proposition 3.2.6 imply that for every λ > λ0 and f ∈ L2(Γ),
there exists a unique u ∈ D(L) such that

(4.5) B̂(u, v) + λ(u, v)L2(Γ;ψ) = (f, v)L2(Γ;ψ)

for every v ∈ H1(Γ;ψ). Therefore, combining (4.4) and (4.5), we have

(λ− λ0)‖u‖L2(Γ;ψ) ≤ ‖f‖L2(Γ;ψ).

Hence the resolvent set of −L satis�es (λ0,∞) ⊂ ρ(−L) and the resolvent is such that

‖Rλ‖L (L2(Γ;ψ)) ≤
1

λ− λ0

for every λ > λ0. This, along with Lemmas 4.1.2 and 4.1.3, allows us to deduce form the Hille-
Yosida theorem (more precisely from Corollary B.1.9) that −L is the generator of a strongly
continuous semigroup (Tt)t≥0 on L2(Γ;ψ) and

‖Tt‖L (L2(Γ;ψ)) ≤ eλ0t.

Then (Tt)t≥0 is also a strongly continuous semigroup on L2(Γ) and satis�es

‖Tt‖L (L2(Γ)) ≤ Ceλ0t.

Corollary 4.1.5. Assume f ∈ C 1([0, T ], L2(Γ)). Then for every u0 ∈ D(L) the problem

(4.6)


∂tu(t, x) + Lu(t, x) = f(t, x) for t ∈ (0, T ), x ∈ Γ \ V,∑

α∈Ai γi,ασ
2
|Γα(vi)∂αu(t, vi) = 0 ∀i ∈ I for every t ∈ (0, T ),

u|Γα(t, vi) = u|Γβ (t, vi) ∀α, β ∈ Ai,∀i ∈ I for every t ∈ (0, T ),

u(0, ·) = u0(·).

has a unique semigroup solution

u ∈ C 1((0, T ), L2(Γ)) ∩ C ([0, T ), H2(Γ)).

Proof. Apply Theorem B.3.3 with the semigroup from Theorem 4.1.4.
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We now want to obtain better estimates than the simple L2 ones which follow from the
operator norm of the semigroup. Recall that the solution is given by Duhamel’s formula

u(t, ·) = Ttu0 +

∫ t

0
Tt−sf(s, ·) ds

where (Tt)t≥0 is the strongly continuous semigroup obtained in Theorem 4.1.4. This implies
that

‖u(t, ·)‖2L2(Γ;ψ) ≤ ‖Ttu0‖2L2(Γ;ψ) +

∫ t

0
‖Tt−sf(s, ·)‖2L2(Γ;ψ) ds

≤ e2λ0t‖u0‖2L2(Γ;ψ) +

∫ t

0
e2λ0(t−s)‖f(s, ·)‖2L2(Γ;ψ) ds

≤ e2λ0T

(
‖u0‖2L2(Γ;ψ) +

∫ T

0
‖f(s, ·)‖2L2(Γ;ψ) ds

)
= e2λ0T

(
‖u0‖2L2(Γ;ψ) + ‖f‖2L2(0,T,L2(Γ;ψ))

)
and therefore

(4.7) ‖u‖C ([0,T ],L2(Γ;ψ)) ≤ C
(
‖u0‖L2(Γ;ψ) + ‖f‖L2(0,T,L2(Γ;ψ))

)
.

Remark that this also implies that

(4.8) ‖u‖L2(0,T,L2(Γ;ψ)) ≤ T‖u‖C ([0,T ],L2(Γ;ψ)) ≤ CT
(
‖u0‖L2(Γ;ψ) + ‖f‖L2(0,T,L2(Γ;ψ))

)
.

We know from Corollary 4.1.5 that u ∈ C 1((0, T ), L2(Γ;ψ)). Hence we may write

d

dt

(
1

2
‖u(t, ·)‖2L2(Γ;ψ)

)
= (∂tu(t, ·), u(t, ·))L2(Γ;ψ)(4.9)

= (−Lu(t, ·), u(t, ·))L2(Γ;ψ) + (f(t, ·), u(t, ·))L2(Γ,ψ)

As u satis�ed the Kirchho� condition we can integrate by parts to �nd

−(Lu(t, ·), u(t, ·))L2(Γ;ψ) = −B(u(t, ·), u(t, ·))

where B is the bilinear form associated with the elliptic operator L with Kirchho� condi-
tion (see (3.4)). According to Theorem 3.2.3 there exists a real constant λ0 such that B(·, ·) +
λ0(·, ·)L2(Γ;ψ) is coercive. This implies that there exists a positive constant C such that

C‖u(t, ·)‖2H1(Γ;ψ) − λ0‖u(t, ·)‖2L2(Γ;ψ) ≤ B(u(t, ·), u(t, ·)).

This yields, using also Young’s inequality on (f(t, ·), u(t, ·))L2(Γ,ψ),

d

dt

(
1

2
‖u(t, ·)‖2L2(Γ;ψ)

)
+ C‖u(t, ·)‖H1(Γ;ψ) ≤ (λ0 + 1)‖u(t, ·)‖2L2(Γ;ψ) +

1

4
‖f(t, ·)‖L2(Γ;ψ)
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and after integration

1

2
‖u(t, ·)‖2L2(Γ;ψ) + C

∫ t

0
‖u(s, ·)‖2H1(Γ;ψ) ds(4.10)

≤ 1

2
‖u0‖2L2(Γ;ψ) + (λ0 + 1)

∫ t

0
‖u(s, ·)‖2L2(Γ;ψ) ds+

1

4

∫ t

0
‖f(s, ·)‖2L2(Γ;ψ) ds,

where we used the fact thatu ∈ C ([0, T ), L2(Γ;ψ)) to obtain that ‖u(0, ·)‖L2(Γ;ψ) = ‖u0‖L2(Γ;ψ).
In particular we have that∫ T

0
‖u(s, ·)‖2H1(Γ;ψ) ds ≤

1

2C
‖u0‖2L2(Γ;ψ) +

1

4C
‖f‖2L2(0,T,L2(Γ;ψ)) +

λ0 + 1

C
‖u‖2L2(0,T,L2(Γ;ψ)).

Using (4.8) we conclude that

(4.11) ‖u‖L2(0,T,H1(Γ;ψ)) ≤ C
(
‖u0‖L2(Γ;ψ) + ‖f‖L2(0,T,L2(Γ;ψ))

)
.

The obtain estimates on ∂tu notice that multiplying by v ∈ H1(Γ;ψ) in the equation
satis�ed by u and integrating with respect to x we �nd, using integration by parts as we did
for (4.9)

(∂tu(t, ·), v)L2(Γ;ψ) = −B(u(t, ·), v) + (f(t, ·), v)L2(Γ;ψ)(4.12)
≤ k‖u(t, ·)‖H1(Γ;ψ))‖v‖H1(Γ;ψ) + ‖f(t, ·)‖L2(Γ;ψ)‖v‖H1(Γ;ψ)

for every 0 < t < T . As it is true for every v ∈ H1(Γ;ψ), this implies

sup
v∈H1(Γ;ψ)

(∂tu(t, ·), v)L2(Γ;ψ)

‖v‖H1(Γ;ψ)
≤ k‖u(t, ·)‖H1((Γ;ψ) + ‖f(t, ·)‖L2(Γ;ψ).

Therefore we have

(4.13) ‖∂tu(t, ·)‖H−1(Γ;ψ) ≤ k‖u(t, ·)‖H1((Γ;ψ) + ‖f(t, ·)‖L2(Γ;ψ)

for every 0 < t ≤ T and after integration

‖∂tu‖L2(0,T,H−1(Γ;ψ)) ≤ C
(
‖u‖L2(0,T,H1(Γ;ψ)) + ‖f‖L2((0,T ),L2(Γ;ψ))

)
(4.14)

≤ C
(
‖u0‖L2(Γ;ψ) + ‖f‖L2(0,T,L2(Γ;ψ))

)
.

Using the equivalence of the norms in L2(Γ;ψ) and L2(Γ) we have proved the following
theorem.

Theorem 4.1.6. Let u0 ∈ D(L), f ∈ C 1([0, T ], L2(Γ)) and u be the solution from Corol-
lary 4.1.5. Then u satis�es

‖u‖C ([0,T ],L2(Γ)) + ‖u‖L2(0,T,H1(Γ)) + ‖∂tu‖L2(0,T,H1(Γ)) ≤ C
(
‖u0‖L2(Γ) + ‖f‖L2(0,T,L2(Γ))

)
.
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4.2 From strongly continuous semigroups to weak solutions

We want to extend our the previous results to more general datau0 ∈ L2(Γ) and f ∈ L2((0, T ), L2(Γ)).
For this we introduce a weaker notion of solution. Existence of such weak solutions was ob-
tained in [ADLT20] by the use of the Galerkin method.
De�nition 4.2.1. A weak solution of (PK ) is a function

u ∈ L2((0, T ), H1(Γ)), with ∂tu ∈ L2((0, T ), H−1(Γ))

such that
〈∂tu(t, ·), v〉H−1,H1 +B(u(t, ·), v) = (f, v)L2(Γ;ψ)

for a.e. t ∈ (0, T ) and u(0, ·) = u0 in L2(Γ), where B is the bilinear form associated to the
elliptic di�erential operator L. /

Theorem 4.2.2. Let u0 ∈ L2(Γ) and f ∈ L2((0, T ), L2(Γ)). Then there exists a weak solution

u ∈ L2((0, T ), H1(Γ)), ∂tu ∈ L2(0, T,H−1(Γ))

of (PK ) with

‖u‖L2(0,T,H1(Γ)) + ‖∂tu‖L2(0,T,H−1(Γ)) ≤ C
(
‖u0‖L2(Γ) + ‖f‖L2(0,T,L2(Γ))

)
.

Proof. See Proof A.4.3

Theorem 4.2.3. Let u0 ∈ L2(Γ) and f ∈ L2((0, T ), L2(Γ)). Then there exists a unique weak
solution to (PK ).

Proof. It is enough to prove that the function u = 0 is the only weak solution for u0 = f = 0.
We have

d

dt

(
1

2
‖u(t, ·)‖2L2(Γ;ψ)

)
+B(u(t, ·), u(t, ·))

= 〈∂tu(t, ·), u(t, ·)〉H−1,H1 +B(u(t, )̇, u(t, ·)) = 0.

Since B(u(t, ·), u(t, ·)) ≥ −λ0‖u(t, ·)‖2L2(Γ;ψ) we obtain that

d

dt

(
‖u(t, ·)‖2L2(Γ;ψ)

)
≤ 2λ0‖u(t, ·)‖2L2(Γ;ψ).

We conclude using the di�erential form of Gronwall’s lemma.
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4.3 Existence of an analytic semigroup and well-posedness for
general initial data

In order to extend the existence of semigroup solutions to initial data in L2(Γ) instead ofD(L)
we have to prove that the strongly continuous semigroup obtained in Theorem 4.1.4 is in fact
analytic. For this purpose we need to consider complex valued functions. Hence the spaces
L̂2(Γ), L̂2(Γ;ψ), Ĥ1(Γ) and Ĥ1(Γ;ψ) will denote the natural extension to complex valued
functions of the functions spaces de�ned previously. Note that these spaces are vector spaces
on C instead of R. However we still consider functions σ, b, c and f which are real valued.

Our �rst step is to study the complex elements of the resolvent set ρ(−L). We de�ne the
sesquilinear form associated to complex elliptic problem by

(4.15) B̂(u, v) = B(u, v̄) ∀(u, v) ∈ Ĥ1(Γ;ψ)× Ĥ1(Γ;ψ).

We now state the main theorem of this section. An analogue theorem for more general
rami�ed spaces was proved in [vBN96, Theorem 3.4].

Theorem 4.3.1. The operator −L is the in�nitesimal generator of an analytic semigroup.

Proof. The proof is mostly identical to one for semigroups generated by uniformly elliptic
operators on domains in Rd as presented in [Paz83, Theorem 7.2.7] and is therefore sent to
Proof A.4.4.

We deduce an improved existence and uniqueness theorem for linear parabolic equations.
For rami�ed spaces see [vBN96, Corollary 3.5].

Corollary 4.3.2. Assume f ∈W 1,∞((0, T ), L2(Γ)). Then for every u0 ∈ L2(Γ) the problem

(4.16)


∂tu(t, x) + Lu(t, x) = f(t, x) for t ∈ (0, T ), x ∈ Γ \ V,∑

α∈Ai γi,ασ
2
|Γα(vi)∂αu(t, vi) = 0 ∀i ∈ I for every t ∈ (0, T ),

u|Γα(t, vi) = u|Γβ (t, vi) ∀α, β ∈ Ai, ∀i ∈ I for every t ∈ (0, T ),

u(0, ·) = u0.

has a unique semigroup solution

u ∈ C 1((0, T ), L2(Γ)) ∩ C ((0, T ), H2(Γ)) ∩ C ([0, T ), L2(Γ)).

Proof. Apply Theorem B.3.4 with the semigroup from Theorem 4.3.1.

We can use the same arguments as for Theorem 4.1.6, this time with arbitrary u0 ∈ L2(Γ)
to obtain

‖u‖C ([0,T ],L2(Γ)) + ‖u‖L2(0,T,H1(Γ)) + ‖∂tu‖L2(0,T,H−1(Γ)) ≤ C
(
‖u0‖L2(Γ) + ‖f‖L2(0,T,L2(Γ))

)
.
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Chapter 5

Stochastic processes on networks

Usually the stochastic process representing the representative agent in mean �eld games is
assumed to be the solution of a stochastic di�erential equation. However as we want to consider
a network as the state space, it is not clear how one can de�ne such an equation in this case.
A solution to this problem is to shift the point of view. Indeed it is standard to see solutions of
stochastic di�erential equations as continuous Markov processes. The workaround is then to
use Feller’s theory to build a Markov process which we hope to have a behavior similar to the
one of the solution of a SDE. The construction of such a process was �rst announced in [FW93]
where the proof is only sketched, and studied in more details in [FS00]. The main steps of
the proof are presented in Fig. 5.1 In what follows we use the results on second order elliptic
equations on networks obtained in Chapter 3 to prove the existence of the process following
[FW93]. This is a standard approach, see [Tai20, Chapter 3] for instance. We then derive some
of the properties of the process and derive the Fokker-Planck-Kolmogorov equations satis�ed
by its transition probabilities and its invariant measure. We will heavily rely on facts and
notations about semigroups of bounded linear operators which are recalled in Appendix B.

5.1 Existence of di�usion processes on networks

Consider two functions σ, b ∈ PC(Γ) with σα ∈ C 0,1([0, `α]) for every α ∈ A. Assume also
that there exists a positive constant ω such that σ2

|Γα ≥ ω for every α ∈ A. Let also (γi,α)α∈Ai
be families of positive numbers for each i ∈ I such that

∑
α∈Ai γi,ασ

2
|Γα(vi) = 1. In what

follows we denote pi,α = γi,ασ
2
|Γα(vi).

We de�ne the following linear di�erential operator

Lu(x) = Lαu(x) = σ2
|Γα(x)∂2u(x) + b|Γα(x)∂u(x), if x ∈ Γα,

with domain

D(L) =

u ∈ C 2(Γ) : Lu ∈ C (Γ),
∑
α∈Ai

pi,α∂αu(vi) = 0 for all i ∈ I

 .
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Elliptic theory on networks

There exists a Feller semigroup on Γ

There exists a càdlàg Markov process on Γ

Continuity of sample paths

Hille-Yosida

Riesz’s representation +
Kolmogorov’s extension

Figure 5.1 – Main steps on the proof of Theorem 5.1.5.

Remark 5.1.1. The condition Lu ∈ C (Γ) is necessary. Indeed we want to construct a strongly
continuous semigroup on C (Γ) hence we need to have Lu ∈ C (Γ) but the fact that D(L) ⊂
C 2(Γ) is not su�cient for this to hold because the derivatives of u ∈ C k(Γ) are in general not
continuous at junctions. Therefore we only know that Lu ∈ PC(Γ) for u ∈ C 2(Γ).

Lemma 5.1.2. The domain D(L) is dense in C (Γ).

Proof. See Proof A.5.1.

Lemma 5.1.3. The unbounded linear operator L : D(L)→ C (Γ) is closed.

Proof. See Proof A.5.2.

Lemma 5.1.4. The resolvent set ρ(L) of L satis�es (0,∞) ⊂ ρ(L) and the resolvent satis�es

‖Rλ‖L (C (Γ)) ≤
1

λ

for every λ > 0.

Proof. See Proof A.5.3.

We are now able to prove the result �rst stated in [FW93, Theorem 3.1].

Theorem 5.1.5. The operator L is the in�nitesimal generator of a strongly continuous semigroup
of contraction on C (Γ) which is uniquely determined by the Kirchho� condition.

Proof. The lemmas 5.1.2, 5.1.3 and 5.1.4 show that the operator L satis�es the conditions of the
Hille-Yosida theorem (Theorem B.1.8) and thus it is the in�nitesimal generator of a strongly
continuous semigroup of contraction on C (Γ). The fact that the semigroup is uniquely deter-
mined by the operatorL and the Kirchho� conditions is a consequence of Proposition B.1.5.
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Consider now (Tt)t≥0 the semigroup of Theorem 5.1.5. For every x ∈ Γ and t ≥ 0 we can
de�ne the linear form on C (Γ)

φx : C (Γ) 3 f 7→ Ttf(x).

Notice, that because (Tt)t≥0 is a strongly continuous semigroup of contractions on C (Γ), the
linear form φx is continuous and ‖φx‖L (C (Γ),R) ≤ 1. According to Riesz’s representation
theorem (see [Bog07, Theorem 7.10.4]) there exists a measure pt(x, ·) on Γ such that

Ttf(x) =

∫
Γ
f(y)pt(x, dy).

In Proposition 3.2.10 we have proved that for every f ∈ C (Γ) such that f ≥ 0 on Γ we
have Rλf = (λI − L)−1f ≥ 0 on Γ. Then Theorem B.1.10 implies that Ttf ≥ 0 on Γ. This
shows that each measure pt(x, ·) must be positive and the fact that (Tt)t≥0 is a semigroup of
contractions imposes to each measure to have a total mass equal to one. Indeed let 1 be the
constant function taking the value 1 everywhere on Γ, then clearly 1 ∈ C 2(Γ) and ∂α1(vi) = 0
for every α ∈ Ai and i ∈ I . Hence f satis�es the Kirchho� condition and 1 ∈ D(L). Then∫

Γ
pt(x, dy) =

∫
Γ
1(y)pt(x, dy) = |Tt1(x)| ≤ 1.

And in fact as λRλ1 = 1 for every λ > 0 by Theorem B.1.10 we have∫
Γ
pt(x, dy) = |Tt1(x)| = 1.

Hence we have proved that each pt(x, ·) is a probability measure on (Γ,B(Γ)). We recall
the following de�nition.
De�nition 5.1.6. By a Feller semigroup (Tt)t≥0 on a Polish spaceE we mean strongly contin-
uous semigroup on C0(E), the space of continuous functions vanishing at in�nity, such that
Ttf ≥ 0 if f ≥ 0 and ‖Tt‖L (C0(E)) ≤ 1. /

In particular the semigroup we just built is Feller. Moreover if the family of linear operators

C0(E) 3 f 7→ Ttf(·) =

∫
E
f(y)pt(·, dy),

where pt(·, ·) is the transition function of some Markov process, is a Feller semigroup we say
that the process is a Feller process. The following standard result is taken from [EK86, Theorem
2.7 p.169].

Theorem 5.1.7. LetE be a locally compact and separable metric space and let (Tt)t≥0 be a Feller
semigroup on C0(E) the space of continuous functions vanishing at in�nity. Then for each proba-
bility measure ν there exists a Markov processX corresponding to (Tt)t≥0 with initial distribution
ν in the sense that

Ex [f(Xt)] = Ttf(x)

for every f ∈ D(L), t ≥ 0 and x ∈ Γ.
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As Γ is a compact Polish space (note that the boundedness of Γ implies that C0(Γ) = C (Γ))
we can indeed apply the theorem above and we can consider a Markov process X on Γ whose
associated semigroup is (Tt)t≥0 and whose transition probabilities are given by pt(x, ·) for
every t > 0 and x ∈ Γ. Being a Feller process it has a càdlàg modi�cation1 (see [RY99, Theorem
2.7 p.91]) which we also denote X and from now on we will only consider this modi�cation
of the process. To prove that X has in fact continuous paths we will use the following result
which combines [Tai20, Theorem 3.33] and [Tai20, Theorem 15.9].

Theorem 5.1.8. Let (Tt)t≥0 is a Feller semigroup on Γ and X is its associated càdlàg Markov
process with transition function pt. If the in�nitesimal generator L of (Tt)t≥0 is such that for
every ε > 0 and x ∈ Γ there exists a function f ∈ D(L) such that

1. f(x) ≥ 0 on Γ,

2. f(y) > 0 for y ∈ Γ \B(x, ε),

3. f(z) = Lf(z) = 0 on a neighborhood of x,

then X has a.s. continuous sample paths.

In order to prove the continuity of the sample paths of X we have to to check that the
transition function obtained for X satis�es the criterion of Theorem 5.1.8. Assume �rst that x
lies in the interior of an edge Γα. Then we know, using a form of cuto� function, that we can
�nd a function f such that fα ∈ C∞([0, `α]) for every α ∈ A satisfying the assumptions of
Theorem 5.1.8 (see [H0̈3, Theorem 1.4.1]). Moreover we can choose this function such that it
is constant and equal to one in the neighborhood of every vertex so that f ∈ D(L). If x is a
vertex the argument is similar, we just construct a cuto� function on each adjacent edge of the
vertex.

Corollary 5.1.9. The sample paths of the Markov process X on Γ generated by L are almost
surely continuous.

We end this section by recalling a standard result form the theory of Markov processes
(see [RY99, Proposition 1.6 p.284]) which can be seen as a weak form of Itô’s formula and will
be used in the next section to derive the stationary Fokker-Plank-Kolmogorov equation.

Proposition 5.1.10 (Martingale property). If f ∈ D(L) then the process

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs) ds

is a martingale. In particular we have

Ex [f(Xt)] = f(x) + Ex
[∫ t

0
Lf(Xs) ds

]
.

1A stochastic process Y is said to be a modi�cation of the process X de�ned on the same probability space if

Yt = Xt a.s.

for every t.
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5.2 The stationary Fokker-Plank-Kolmogorov equation

This section is devoted to the derivation of the Fokker-Plank-Kolmogorov equation associated
to the invariant measure.

Let (Tt)t≥0 be a Feller semigroup associated to Markov transition probabilities pt(x, ·) on
Γ.
De�nition 5.2.1. An invariant measure for (Tt)t≥0 is a probability measure µ such that for
every continuous function f on Γ one has

Eµ [f(Xt)] :=

∫
Γ
Ttf(x)µ(dx) =

∫
Γ
f(x)µ(dx).

/

We want to prove that the process X obtained above admits an invariant measure. This is
a consequence of the following theorem which can be found in [DPZ96].

Theorem 5.2.2 (Krylov-Bogoliubov). LetE be a Polish space, (Tt)t≥0 be a Feller semigroup onE
with transition probabilities pt(x, ·) and µ be a probability measure on E. De�ne the probability
measures

RT (x,A) =
1

T

∫ T

0
pt(x,A) dt ∀A ∈ B(E)

for every x ∈ E and T > 0. De�ne another family of probability measure

R?Tµ(A) =

∫
E
RT (x,A)µ(dx) ∀A ∈ B(E)

for every T > 0. If the family (R?Tµ)T>0 is uniformly tight then there exists an invariant measure
for (Tt)t≥0.

Corollary 5.2.3. The Feller process X de�ned on Γ admits an invariant measure.

Proof. This follows from the fact that any family of probability measures on a compact topo-
logical space is uniformly tight. One may for example choose µ to be the initial distribution of
the Feller process in Theorem 5.2.2.

We are now in position to derive the stationary FPK equation for our class of stochastic pro-
cesses. Consider any u ∈ D(L) and let µ be an invariant measure of the process X generated
by L. Then according to Proposition 5.1.10 we have

Eµ[u(X0)]− Eµ [u(Xt)] + Eµ
[∫ t

0
Lu(Xs) ds

]
= 0.

Using the fact that µ is an invariant measure this can be written as∫
Γ
u(x) µ(dx)−

∫
Γ
u(x) µ(dx) +

∫
Γ

∫ t

0
Lu(x) µ(dx)dt = 0
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which yields ∫
Γ
Lu(x) µ(dx) = 0 for every u ∈ D(L).

This leads to the following de�nition.
De�nition 5.2.4. We say that a measure µ satis�es the equation

L?µ = 0

where L? is the formal adjoint2 of L if for every u ∈ D(L) we have∫
Γ
Lu(x) µ(dx) = 0.

/

In order to study the FPK equation we prove that any invariant measure µ admits a density
with respect to L . The proof follows the argument made in [BKR01, Theorem 2.1] which was
used to prove an analogue result for FPK equations on domains inside Rd (see also [BKRS15,
Corollary 1.5.3]).

Theorem 5.2.5 (Bogachev-Krylov-Röckner). Let µ be a positive �nite Borel measure satisfying

L?µ = 0.

Then µ admits a density m with respect to L . In particular any invariant measure of X has a
density.

Proof. Let λ > 0, then for every v ∈ D(L) we have∫
Γ
(−L+ λI)v(x) µ(dx) = λ

∫
Γ
v(x) µ(dx).

Furthermore according to Theorem 3.2.9 and Proposition 3.2.6, for every f ∈ C∞(Γ) there
exists u ∈ D(L) such that (−L+λI)u(x) = f(x) for every x ∈ Γ\V and this can be extended
by continuity to the whole of Γ. Moreover the function u satis�es ‖u‖C2(Γ) ≤ C‖f‖L2(Γ). This
yields ∣∣∣∣∫

Γ
f(x) µ(dx)

∣∣∣∣ ≤ λ ∫
Γ
|u|(x) µ(dx) ≤ λµ(Γ)‖u‖C 2(Γ)

≤ Cλµ(Γ)‖f‖L2(Γ).

Now choose any A ∈ B(Γ). By convolution of χA with a sequence of molli�ers we obtain a
sequence (fn)n∈N in PC(Γ) such that fn,α ∈ C∞([0, `α]) for every α ∈ A and converging to
χA in L2(Γ). The sequence is also uniformly bounded in L∞(Γ). We have∣∣∣∣∫

Γ
fn(x) µ(dx)

∣∣∣∣ ≤ Cλµ(Γ)

∫
Γ
|fn(x)|2 dx

2The rigorous de�nition of the adjoint operator will be obtained later.
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for every n ∈ N. As (fn)n∈N converges in L2(Γ) and is uniformly bounded in L∞(Γ) we can
apply the dominated convergence theorem to obtain

µ(A) ≤ Cλµ(Γ) L (A)

which proves that µ is absolutely continuous with respect to the measure L . We can now
apply the Radon-Nikodym theorem (see [Bog07, Theorem 3.2.2]) which states that there exists
an integrable function m : Γ→ R such that

µ(A) =

∫
A
m(x) dx

for every A ∈ B(Γ).

We can now continue our derivation of the FPK equation, we extend the argument used
in [ADLT19]. For every u ∈ D(L), we have that∫

Γ
Lu(x)m(x) dx = 0.

It will be convenient to write L in divergence form :

Lu = ∂(σ2∂u) + b̃∂u

where b̃ = b− 2σ∂σ. Then we have

(5.1)
∑
α∈A

∫ `α

0

(
∂(σ2

α(s)∂uα(s)) + b̃α(s)∂uα(s)
)
mα(s) ds = 0

which implies that

(5.2) ∂(−σ2
α∂mα + b̃αmα) = 0

in the sense of distributions for every α ∈ A. From a standard result of the theory of distribu-
tions (see [H0̈3, Theorem 3.1.4]) we deduce that there exist constants (cα)α∈A such that

−σ2
α∂mα + b̃αmα = cα

for every α ∈ A. This implies that mα ∈ W 1,1(0, `α) and the standard Sobolev inequality
together with a bootstrap argument gives mα ∈ C 1([0, `α]).

As m is smooth enough we can integrate by parts

0 =

∫
Γ
Lu(x)m(x) dx =

∑
α∈A

∫ `α

0

[
∂(σ2

α(s)∂uα(s))mα(s) + b̃α(s)∂uα(s)mα(s)
]
ds

=
∑
i∈I

∑
α∈Ai

σ2
|Γα(vi)m|Γα(vi)∂αu(vi) +

∑
α∈A

∫ `α

0

[
∂uα(s)

(
−σ2

α∂mα(s) + b̃α(s)mα(s)
)]

ds

=
∑
i∈I

∑
α∈Ai

σ2
|Γα(vi)m|Γα(vi)∂αu(vi) +

∑
α∈A

cα

∫
Γα

∂u(x) dx
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Choose any i ∈ I and consider a test function u ∈ D(L) of the form{
u(vj) = δi,j , ∀j ∈ I,
∂αu(vj) = 0, ∀j ∈ I, ∀α ∈ Ai.

This gives

(5.3) 0 =
∑
α∈A

cα

∫ `α

0
∂uα(s) ds =

∑
α∈Ai

ni,αcα.

where the numbers ni,α are those de�ned in (2.3). Now choose α, β ∈ Ai and consider a test
function u ∈ D(L) such that

1. u takes the same value at each vertex of Γ and
∫

Γδ
∂u(x) dx = 0 for every δ ∈ A,

2. ∂αu(vi) = 1
pi α

, ∂βu(vi) = −1
pi,β

and all other directional derivatives take the value 0.

With test-functions of this form we �nd that

m|Γα(vi)
γi,α

=
m|Γβ (vi)

γi,β

for every i ∈ I and α, β ∈ Ai. Then for every i ∈ I and each α ∈ Ai we can multiply (5.2) by
ni,α and taking the sum over Ai. This yields using (5.3)

0 =
∑
α∈Ai

−σ2
|Γα∂αm|Γα(vi) + ni,α

(
m|Γα(vi)b̃|Γα(vi)− cα

)
=
∑
α∈Ai

−σ2
|Γα∂αm|Γα(vi) + ni,αm|Γα(vi)b̃|Γα(vi).

Therefore the density m satis�es the following equation

(SFPK)


−∂(σ2∂m) + ∂(b̃m) = 0 on Γ \ V,∑

α∈Ai σ
2
|Γα∂αm|Γα(vi)− ni,αm|Γα(vi)b̃|Γα(vi) = 0 ∀i ∈ I,

m|Γα (vi)
γi,α

=
m|Γβ (vi)

γi,β
∀i ∈ I, ∀α, β ∈ Ai.

By Theorem 3.3.2 the problem (SFPK) as a unique weak solution m ∈ W . In particular the
invariant measure is unique.
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Chapter 6

The Hamilton-Jacobi-Bellman
equation

This section gathers some applications of the previous chapters to Hamilton-Jacobi-Bellman
equations. We �rst make a formal derivation of the ergodic HJB equation for the optimal
control of the Markov process obtained in Chapter 5. We also recall the main theorems proved
in [ADLT19] for this problem. Then we present some results also obtained in [ADLT19] for the
stationary mean �eld game system with local coupling and prove the case of non-local coupling
which was left as a remark in [ADLT19]. Finally we apply a standard result from the theory of
semigroups to prove a existence and uniqueness theorem for the parabolic HJB equation.

6.1 Ergodic HJB equation

Let (µα)α∈A be strictly positive constants and a ∈ PC(Γ). In this section our goal is to de-
rive and study the Hamilton-Jacobi-Bellman (HJB for short) equation associated to the optimal
control problem of the Markov process Xt de�ned by its generator

Lu(x) = Lαu(x) = µα∂
2u(x) + a|Γα(x)∂u(x)

as in Chapter 5. The function a is the control associated to the long run average cost

J (x, a) = lim inf
T→∞

1

T
Ex
[∫ T

0
l(Xs, a(Xs)) ds

]
where we assume that the running cost is of the form l(x, a) = lα(π−1

α (x), a) for x ∈ Γα.
In what follows we will often write as for a(Xs).

Remark 6.1.1. The Markov property can be applied to the control a and in particular we have

Ex [l(Xt, at)] = Ex [EXs [l(Xt−s, at−s)]]

for every 0 ≤ s < t whenever l(·, a(·)) is a bounded measurable function.
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6.1.1 The in�nite horizon problem

We are �rst going to consider the in�nite horizon problem and and make an formal derivation
of its associated Hamilton-Jacobi-Bellman equation. For every real λ > 0, de�ne the cost
functional

Jλ(x, a) = Ex
[∫ ∞

0
l(Xs, as)e

−λs ds

]
.

and its associated value function uλ(x) = infa J (x, a). We assume that a dynamic program-
ming principle of the following form holds.
Assumption 1 (Dynamic programming principle). For every t > 0 we have

uλ(x) = inf
a
Ex
[∫ t

0
l(Xs, as)e

−λs ds+ uλ(Xt)e
−λt
]
.

/

We are now able to formally derive the HJB equation associated to uλ. We proceed similarly
to [CP20]. According to the dynamic programming principle we have for a small h > 0

uλ(x) = inf
a
Ex
[∫ h

0
l(Xs, as)e

−λs ds+ uλ(Xh)e−λh
]

and hence

(6.1) 0 = inf
a
Ex
[∫ h

0
l(Xs, as)e

−λs ds+ uλ(Xh)e−λh − uλ(x)

]
.

Assuming uλ belongs to D(L), in particular this implies that uλ must satisfy the Kirchho�
condition associated with the generator, by Proposition 5.1.10 we have

Ex [uλ(Xh)] = Ex
[
uλ(x) +

∑
α∈A

∫ h

0
χ{Xs∈Γα\V}

(
µα∂

2uλ(Xs) + a(Xs)∂uλ(Xs)
)
ds

]
.

Injecting this into (6.1) gives

0 = inf
a
Ex
[ ∫ h

0
l(Xs, as)e

−λs ds+ (e−λh − 1)uλ(x)

+ e−λh
∑
α∈A

∫ h

0
χ{Xs∈Γα\V}

(
µα∂

2uλ(Xs) + a(Xs)∂uλ(Xs)
)
ds

]
.

Then dividing by h and taking the limit when h tends to 0 formally yields1

0 = inf
a

{
l(x, a)− λuλ(x) +

∑
α∈A

χ{x∈Γα\V}
(
µα∂

2uλ(x) + a∂uλ(x)
)}

.

1Note that this step implies an interversion of limits.
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Finally we have obtained

(HJBλ,h)


−µα∂2uλ(x) +H(x, ∂uλ) + λuλ(x) = 0 for x ∈ Γα \ V,∑

α∈Ai pi,α∂αu(vi) = 0 for every i ∈ I,
u|Γα(vi) = uΓβ (vi) for all α, β ∈ Ai,

where the Hamiltonian is given by H(x, p) = supa {−ap− l(x, a)} and for every i ∈ I
the positive reals (pi,α)α∈Ai are de�ned by pi,α = µαγi,α for some positive number γi,α and∑

α∈Ai pi,α = 1.
We also assume that we have a veri�cation theorem for this optimal control problem.

Assumption 2 (Veri�cation). Assume vλ ∈ C 2(Γ) solves (HJBλ,h). Then

vλ(x) ≤ uλ(x)

for everyx ∈ Γ. Consequently we then have vλ = uλ, whereuλ is the value function associated
with the optimal control problem. /

In the case where Assumptions 1 and 2 hold, we would have the following consequence.

Corollary 6.1.2. Let uλ be a solution of (HJBλ,h). The function a(x) = ∂pH(x, ∂uλ) is an
optimal feedback for the stochastic control problem.

We now come to the existence result which was proved in [ADLT19, Proposition 1] ex-
tending [CM16, Proposition 10]. In both cases the proof follows an argument introduced
in [BMP83].

Theorem 6.1.3. AssumeHα ∈ C ([0, `α]×R) for every α ∈ A and that there exists a constant
C such that

(6.2) |H(x, p)| ≤ C
(
1 + |p|2

)
, ∀(x, p) ∈ Γ× R.

Then there exists a classical solution u ∈ C 2(Γ) of (HJBλ,h).

Corollary 6.1.4. In addition the the assumptions of Theorem 6.1.3 assume that Hα is locally
Lipschitz continuous with respect to both variables for every α ∈ A. Then the solution u from
Theorem 6.1.3 belongs to C 2,1(Γ).

6.1.2 Back to the ergodic problem

In order to come back to the original problem we introduce the following cost functional

(6.3) J (x, a, T ) = Ex
[∫ T

0
l(Xs, as) dx

]
and the associated value function

(6.4) u(x, T ) = inf
a
J (x, a, T ).
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The reason for our study of the in�nite horizon problem is the following assumption (which
was proved in a di�erent setting in [AL98, Proposition VI.1]) which makes the connection
between the value function of the in�nite horizon problem and the value function of the �nite
horizon problem.
Assumption 3. The function λuλ converges uniformly and λ tends to 0+ to a constant if, and
only if, then function 1

T u(·, T ) converges uniformly as T tends to +∞ to the same constant. /

Therefore the study of the problem with long rung average cost is equivalent to taking to
limit λ→ 0+ in the in�nite horizon problem.
Assumption 4. We assume that for every α ∈ A we have

1. Hα ∈ C 1([0, `α]× R),

2. Hα is convex in p for every x ∈ [0, `α],

3. there exists positive constants C0, C1 and some q ∈ (1, 2] such that H(x, p) ≥ C0|p|q −
C1 for (x, p) ∈ [0, `α]× R.

/

The following theorem was obtained in [ADLT19, Theorem 3.4] extending [CM16, Theorem
4] to more general Kirchho� conditions.

Theorem 6.1.5. Under Assumption 4 for every f ∈ PC(Γ) there exists a unique pair (u, ρ) ∈
C 2(Γ)× R solution of

(HJBe)


−µα∂2v +H(x, ∂v) + ρ = f x ∈ Γα \ V∑

α∈Ai pi,α∂αv(vi) = 0 i ∈ I,
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, ∀i ∈ I,∫

Γ u dx = 0.

and there exists a positive constant C such that

‖u‖C 2(Γ) ≤ C.

Furthermore if the function f satis�es fα ∈ C 0,θ([0, `α]) for every α ∈ A, then we also have

‖u‖C 2,θ(Γ) ≤ C.

6.1.3 Stationary mean �eld games

In this section we study the mean �eld game system where the state space is a network. The
main idea behind mean �eld games is to consider a continuum of identical agents which we
represent by a stochastic process of the form studied in Chapter 5. It was proved in [FS00] that
such a process can be interpreted as solving the stochastic di�erential equation

dXt = σ(Xt)dWt + b(Xt)dt
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on each edge for some Brownian motion W . It is therefore natural to make the assumption
that each agent can control the drift of this dynamic and hence we assume that a representative
agent is a stochastic process generated by the di�erential operator{

Lu = µ∂2u+ a∂u∑
α∈Ai γi,αµα∂αu(vi) = 0

where µ is positive and constant on each edge, a ∈ PC(Γ) will be the control and the constants
γi,α are chosen so that

∑
α∈Ai γi,αµα = 1 for every i ∈ I .

For the stationary problem each agent uses the control a to minimize the long run average
cost

J (x, a) = lim inf
T→∞

1

T
Ex
[∫ T

0
l(Xs, a(Xs)) + V [m(·, s)](Xs) ds

]
where V : P(Γ) → C 2(Γ) is a coupling operator and m is the density of agents. We assume
that the running cost is of the form l(x, a) = lα(π−1

α (x), a) for x ∈ Γα. In Chapter 6 this
optimal control problem was associated with the following ergodic Hamilton-Jacobi-Bellman
equation

(6.5)


−µ∂2u+H(x, ∂u) + ρ = V [m](x) x ∈ Γα \ V
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, ∀i ∈ I,∑

α∈Ai γi,αµα∂αu(vi) = 0 i ∈ I,∫
Γ u(x) dx = 0.

Where the Hamiltonian is given by

H(x, p) = sup
a
{−ap− l(x, a)} .

Moreover we saw that for this problem the optimal feedback was given by

a?(x) = −∂pH(x, ∂u).

Therefore the generator of the stochastic process representing an agent is

Lv = µ∂2v(x)− ∂pH(x, ∂u)∂v

and we saw in Chapter 5 that the Fokker-Planck-Kolmogorov equation describing the station-
ary measure of this process was
(6.6)
−µ∂2m− ∂(m∂pH(x, ∂u)) = 0 on Γ \ V,∑

α∈Ai µα∂αm|Γα(vi) + ni,αm|Γα(vi)∂pH|Γα(vi, ∂u|Γα(vi)) = 0 ∀i ∈ I,
m|Γα (vi)
γi,α

=
m|Γβ (vi)

γi,β
∀i ∈ I, ∀α, β ∈ Ai,

m ≥ 0,
∫

Γm(x) dx = 1.
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We have obtained the following mean �eld game system describing the coupled dynamic
(SMFG)

−µ∂2u+H(x, ∂u) + ρ = V [m](x) x ∈ Γ \ V
µ∂2m+ ∂(m∂pH(x, ∂u)) = 0 x ∈ Γ \ V,
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, ∀i ∈ I,∑

α∈Ai γi,αµα∂αu(vi) = 0 i ∈ I,∑
α∈Ai µα∂αm|Γα(vi) + ni,αm|Γα(vi)∂pH|Γα(vi, ∂u|Γα(vi)) = 0 ∀i ∈ I,

m|Γα (vi)
γi,α

=
m|Γβ (vi)

γi,β
∀i ∈ I, ∀α, β ∈ Ai,

m ≥ 0,
∫

Γm(x) dx = 1,
∫

Γ u(x) dx = 0.

We now list the assumptions made on the structure of the problem.
1. For the HamiltonianH : Γ×R→ R we assume that there exists constantsC0, C1, C2 ∈

(0,+∞) and q ∈ (1, 2] such that for every α ∈ A we have

• Hα ∈ C 1([0, `α]× R),
• Hα(x, p) is convex in p for every x ∈ [0, `α],
• Hα(x, p) ≥ C0|p|q − C1 for (x, p) ∈ [0, `α]× R,
• |∂pHα(x, p)| ≤ C2

(
|p|q−1 + 1

)
for (x, p) ∈ [0, `α]× R.

2. The coupling operator V : P(Γ)→ C 2(Γ) is of the form

V [m̃](x) = F (m(x))

with F ∈ C ([0,+∞)) for every probability measure m̃ which is absolutely continuous
with respect to the measure L with density m. We also assume that

F (r) ≥ −M

for some positive constant M .
We now state the main result of [ADLT19] which generalizes [CM16, Theorem 1].

Theorem 6.1.6. Under the running assumptions there exists a solution

(u,m, ρ) ∈ C 2(Γ)×W × R

of (SMFG). Furthermore, if F is locally Lipschitz continuous, then the u ∈ C 2,1(Γ). Finally if F
is strictly increasing, then the solution is unique.

We now prove the analogue result for non-local regularizing coupling, which means that
we assume that the coupling operator V is such that

V ∈ C (P(Γ),Fγ)

for some γ > 0 and is bounded where

Fγ =
{
f : Γ→ R : fα ∈ C 0,γ([0, `α])

}
.

The following result is announced in [ADLT19, Remark 12] and as stated there the proof is
very similar to the one for [ADLT19, Theorem 4.1].
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Theorem6.1.7. Under the previous assumptions onH and the non-local regularizing assumption
on V there exists a solution (u,m, ρ) ∈ C 2,γ(Γ)×W × R of (SMFG).

Proof. For σ ∈ (0, 1/2) we de�ne the following function space

Mσ =

{
m : Γ→ R : mα ∈ C 0,σ([0, `α]) and

m|Γα(vi)
γi,α

=
m|Γβ (vi)

γi,β
, ∀α, β ∈ Ai, ∀i ∈ I

}
.

Provided with the following norm

‖m‖Mσ = ‖m‖L∞(Γ) + max
α∈A
‖mα‖C 0,σ([0,`α])

the space Mσ becomes a Banach space. We also consider the following closed and convex
subset ofMσ

K =

{
m ∈Mσ : m ≥ 0 and

∫
Γ
m dx = 1

}
.

As is usually done for mean �eld game systems we are going to apply Schauder’s �xed point
theorem. Let m ∈ K, then from the assumption on V we know that V [m] belongs to Fγ and
according to Theorem 6.1.5 there exists a unique solution (u, ρ) ∈ C 2,γ(Γ)× R of

(6.7)


−µα∂2u+H(x, ∂u) + ρ = V [m] x ∈ Γα \ V,∑

α∈Ai pi,α∂αv(vi) = 0 i ∈ I,∫
Γ u(x) dx = 0.

Then from Theorem 3.3.2 there also exists a unique solution m̄ ∈ K ∩W of

(6.8)


−µ∂2m+ ∂(m∂pH(x, ∂u)) = 0 on Γ \ V,∑

α∈Ai σ
2
|Γα∂αm|Γα(vi)− ni,αm|Γα(vi)b′|Γα(vi) = 0 ∀i ∈ I,

m|Γα (vi)
γi,α

=
m|Γβ (vi)

γi,β
∀i ∈ I, ∀α, β ∈ Ai

m ≥ 0,
∫

Γm dx = 1.

Hence the application T : K → K de�ned by T (m) = m̄ is well de�ned.
We �rst claim that T is continuous. Indeed let mn,m ∈ K for m ∈ N such that mn

converges to m inMσ and de�ne m̄n = T (mn), m̄ = T (m). We prove that m̄n converges
to m̄ inMσ . Indeed for every n ∈ N there exists a unique solution (un, ρn) ∈ C 2,γ(Γ) × R
of the associated HJB problem (6.7) associated to mn and there also exists a unique solution
(u, ρ) ∈ C 2,γ(Γ) × R associated to m. As the image of V is assumed to be bounded in Fγ
we deduce that (un, ρn) is bounded in C 2,γ(Γ) × R, uniformly in n. Therefore by Ascoli’s
theorem there exists some ū ∈ C 2(Γ) such that un converges to ū in C 2(Γ). Moreover there
also exists some ρ̄ ∈ R such that ρn converges to ρ̄. We have enough regularity to pass to the
limit n → ∞ in (6.7) and we deduce that (ū, ρ̄) that is a solution of (6.7) associated to m. By
the uniqueness of solution of (6.7) we have (ū, ρ̄) = (u, ρ).

We can now consider m̄n = T (mn) and m̄ = T (m). From the convergence of un to u
in C 2(Γ) we deduce that ∂pH(·, ∂un) converges to ∂pH(·, ∂u) in PC(Γ). In particular the
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∂pH(·, ∂un) are bounded in PC(Γ) and therefore the m̄n are bounded inW . Then, on the one
hand we have, from the re�exivity ofW , that m̄n converges weakly to some m̂ inW and on the
other hand, from the compact embedding of W intoMσ for σ ∈ (0, 1/2), that m̄n converges
strongly to m̂ inMσ . From the weak converges we deduce that m̂ is a weak solution of (6.8)
associated to u. This solution being unique we have m̂ = m̄. We have proved the continuity
of T .

We also claim that T (K) is precompact inMσ . Indeed from the assumption on V we know
that V [K] is bounded in Fγ . This implies that T [K] is bounded in W . As before we conclude
with to compact embedding W ↪→Mσ .

Finally we can apply Schauder’s �xed point theorem (see [GT01, Corollary 11.2]) to con-
clude that T admits a �xed point in K which must then be a solution of (SMFG).

Following [LL07, Theorem 2.4] we can impose a monotony condition on the coupling op-
erator to obtain a uniqueness result.

Theorem 6.1.8. In addition to the assumptions of Theorem 6.1.7 suppose that the coupling oper-
ator V satis�es the Lasry-Lions monotony condition

(6.9)
∫

Γ
(V [m1]− V [m2]) (m2 −m1)(dx) ≥ 0 ∀m1,m2 ∈ P(Γ).

Then there exists at most one solution (SMFG).

Proof. For simplicity, and because it is the case of interest for us here, in the rest of the proof
we assume that the probability measures have a density with respect to L . Let (u1,m1, ρ1)
and (u2,m2, ρ2) are two solutions of (SMFG). Then integrating against (m1−m2) in the HJB
equation (6.7) satis�ed by (ui, ρi) for i = 1, 2 and taking the di�erence of the two equations
we �nd ∫

Γ

[
−µ(∂2u1 − ∂2u2) +H(x, ∂u1)−H(x, ∂u2) + ρ1 − ρ2

]
(m1 −m2)dx

=

∫
Γ

(V [m1]− V [m2]) (m1 −m2) dx.

After integration by parts and using the conditions satis�ed by ui and mi for i = 1, 2 this can
be rewritten∫

Γ
µ∂(u1 − u2) · ∂(m1 −m2) + (H(x, ∂u1)−H(x, ∂u2)) · (m1 −m2) dx+ ρ1 − ρ2

=

∫
Γ

(V [m1]− V [m2]) (m1 −m2) dx.

Then integrating against (u1 − u2) in the FPK equation (6.8) satis�ed by mi for i = 1, 2 and
the taking the di�erence, we �nd∫

Γ

[
µ(∂2m1 − ∂2m2) + ∂(m1∂pH(x, ∂u1)−m2∂pH(x, ∂u2))

]
(u1 − u2) dx = 0.
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Again integrating by parts this can be rewritten∫
Γ
µ∂(m1 −m2) · ∂(u1 − u2) + (m1∂pH(x, ∂u1)−m2∂pH(x, ∂u2)) · ∂(u1 − u2).

Taking the di�erence of the two expression we just obtained and rearranging the terms we �nd

0 =

∫
Γ

(V [m1]− V [m2]) (m1 −m2) dx

+

∫
Γ
m1 (H(x, ∂u2)−H(x, ∂u1)− ∂pH(x, ∂u1) · ∂(u2 − u1)) dx

+

∫
Γ
m2 (H(x, ∂u1)−H(x, ∂u2)− ∂pH(x, ∂u2) · ∂(u1 − u2)) dx+ ρ2 − ρ1.

Up to inverting the indexes we may assume that ρ2 ≥ ρ1. Therefore ρ2 − ρ1 ≥ 0. Moreover
the convexity of H with respect to the second variable implies that

H(x, ∂ui)−H(x, ∂uj)− ∂pH(x, ∂ui) · ∂(uj − ui) ≥ 0

and because m1,m2 ≥ 0 and V satis�es the Lasry-Lions monotony condition we deduce that
every term in the sum of the right-hand side is nonnegative and must hence all cancel. In
particular we must have ∫

Γ
(V [m1]− V [m2]) (m1 −m2) dx = 0.

It is enough to consider the case V [m1] = V [m2]. In this case the uniqueness of the solutions
of the HJB part of the problem implies that (u1, ρ1) = (u2, ρ2) and then by uniqueness of the
solution of the FPK part we also have m1 = m2. This concludes the proof.

6.2 Parabolic HJB equation

In this section we want to prove the existence and uniqueness of solutions to the following
problem.

(6.10)


−∂tu− µ∂2

xu+H(x, ∂xu) = f in (Γ \ V)× (0, T ),

u|Γα(t, vi) = u|Γβ (t, vi) ∀α, β ∈ Ai, ∀i ∈ I, ∀t ∈ (0, T ),∑
α∈Ai γi,αµα∂αu(vi) = 0 ∀i ∈ I, ∀t ∈ (0, T ),

u(T, ·) = uT .

To achieve this we follow the steps of [Paz83, Section 8.4], see also [Hen81, Section 3.6].
This section is analogous [vBN96, Section 4] where the authors consider rami�ed spaces.
Assumption 5. We make the following assumptions
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1. The Hamiltonian H : Γ× R→ R satis�es for every α ∈ A

(a) Hα ∈ C 1([0, `α]× R),
(b) Hα(x, ·) is convex for every x ∈ [0, `α],
(c) Hα(x, p) ≤ C0(1 + |p|) for every (x, p) ∈ [0, `α]× R,
(d) |∂pH(x, p)| ≤ C0 for every (x, p) ∈ [0, `α]× R,
(e) |∂xH(x, p)| ≤ C0(1 + |p|) for every (x, p) ∈ [0, `α]× R.

2. The function f belongs to H1(0, T,W 1,∞
b (Γ)).

3. The function uT belongs to H2(Γ) and satis�es the Kirchho� condition∑
α∈Ai

γi,αµα∂αvT (vi) = 0

for every i ∈ I .

/

Considering the di�erential operator L = −µ∂2 in L2(Γ) with domain

D(L) =

u ∈ H2(Γ) :
∑
α∈Ai

γi,αµα∂αu(vi) = 0, ∀i ∈ I


we would like to apply the results from Appendix B.3.3. However in this caseL does not satisfy
Assumptions 6 and 7, in particular L does not satisfy 0 ∈ ρ(−L). To solve this issue we instead
consider the perturbed operator L0 = L + λ0I , with D(L0) = D(L), which satis�es these
assumptions for λ0 large enough. In particular−L0 is the in�nitesimal generator of an analytic
semigroup on L2(Γ). We then rewrite (6.10) as

(6.11)
{
−u′(t) + L0u(t) = f0(t,u) ∀t ∈ (0, T )

u(T ) = uT ,

where f0(t, u) = f(t, u)−λ0u−H(·, ∂u). We check that this problem satis�es the assumptions
of Theorem B.3.8. The main di�culty is to �nd the fractional power 0 < α ≤ 1. The �rst
step consists in the following proposition, which extends a standard result of real analysis to
networks.

Proposition 6.2.1. Let u ∈ H2(Γ) then for every η > 0 we have

‖∂u‖L2(Γ) ≤ C
(
η1/2‖u‖L2(Γ) + η−1/2‖u‖H2(Γ)

)
.

Proof. Let u ∈ H2(Γ). We �rst claim that for every α ∈ A we have

(6.12) ‖∂uα‖L2([0,`α]) ≤ ‖uα‖
1/2
L2([0,`α])

‖∂2uα‖1/2L2([0,`α])
.
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Indeed consider �rst v ∈ C∞c (R). By integration by parts we �nd that∫
R
|∂v|2 dx ≤

∫
R
|v∂2v| dx

≤ ‖v‖L2(R)‖∂2v‖L2(R)

where we used the Cauchy-Schwarz inequality to obtain the last line. This yields

‖∂v‖L2(R) ≤ ‖v‖
1/2
L2(R)

‖∂2v‖1/2
L2(R)

.

We then obtain (6.12) by the density of C∞c (R) in H2([0, `α]) (see [Bre11, Theorem 8.7]). We
can then apply Young’s inequality to (6.12) to get

(6.13) ‖∂uα‖L2([0,`α]) ≤ C
(
η1/2‖uα‖L2([0,`α]) + η−1/2‖∂2uα‖L2([0,`α])

)
for every η > 0. Finally we can sum over α ∈ A in (6.13) to obtain

‖∂u‖L2(Γ) ≤ C
(
η1/2‖u‖L2(Γ) + η−1/2‖∂2u‖L2(Γ)

)
.

We can now consider the linear operator B = ∂ with natural domain D(B) = H1(Γ).
Using Theorem 3.2.9 and Proposition 3.2.6 we have ‖u‖H2(Γ) ≤ C‖L0u‖L2(Γ) for every u ∈
D(L) and from Theorem B.3.6 and Proposition 6.2.1 we deduce that for every α > 1

2 the
fractional operator Lα0 (see Appendix B.3.3) satis�esD(Lα0 ) ⊂ D(B). In particular there exists
a continuous embedding Xα ↪→ H1(Γ), where Xα is D(Lα0 ) endowed with the graph norm of
Lα0 in L2(Γ).

Then as f ∈ H1(0, T, L2(Γ)) we deduce f ∈ C 0,σ([0, T ], L2(Γ)) for σ ∈ (0, 1/2]. Also
as Hα ∈ C ([0, `α],R) and |∂pHα| is bounded we deduce that Hα is Lipschitz continuous for
every α ∈ A. We therefore have for (t1, u1), (t2, u2) ∈ (0, T )×Xα

‖f0(t1, u1)− f0(t2, u2)‖L2(Γ)

≤ ‖f(t1, ·)− f(t2, ·)‖L2(Γ) + λ0‖u1 − u2‖L2(Γ) + ‖H(·, ∂u1)− h(·, ∂u2)‖L2(Γ)

≤ K1|t1 − t2|σ +K2

(
‖u1 − u2‖L2(Γ + ‖∂u1 − ∂u2‖L2(Γ)

)
≤ L

(
|t1 − t2|σ + ‖u1 − u2‖H1(Γ)

)
≤ K3 (|t1 − t2|σ + ‖u1 − u2‖Xα) .

This proves that Assumption 7 holds for U = (0, T )×Xα for α > 1
2 . Moreover

‖f0(t, u)‖L2(Γ) ≤ K
(
1 + ‖u‖L2(Γ) + ‖∂u‖L2(Γ)

)
≤ K

(
1 + ‖u‖H1(Γ)

)
≤ K̃ (1 + ‖u‖Xα)

We can now apply Theorems B.3.7 and B.3.82 to obtain the following result.
2Reverting time.
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Lemma 6.2.2. Under Assumption 5 there exists a unique solution

u ∈ C ([0, T ], L2(Γ)) ∩ C 1([0, T ), H1(Γ)) ∩ C ([0, T ), H2(Γ))

of (6.10). Moreover ∂tu is locally Hölder continuous in t with values in H1(Γ).

The regularity of the time derivative then allows to directly deduce the following better
result. The estimates are taken from [ADLT20, Theorem 4.5].

Theorem 6.2.3. Under Assumption 5 there exists a unique classical solution

u ∈ C ([0, T ], L2(Γ)) ∩ C 1([0, T ), H1(Γ)) ∩ C ([0, T ), H3(Γ))

of (6.10) with
‖u‖L2(0,T,H3(Γ)) + ‖∂tu‖L2(0,T,H1(Γ)) ≤ C

where C depends only on uT , µ, H and f . Moreover t 7→ ∂tu(t, ·) is locally Hölder continuous
with values in H1(Γ).
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Appendix A

Proofs

This appendix contains the proofs of various results stated in the body of the text.

A.1 Properties of networks

Proof A.1.1 (Proof of Proposition 2.1.5). Let x, y ∈ Γ with x 6= y. First notice that |x− y| ≤
d(x, y) always holds. For the second estimate consider the quantity

C = sup
x,y∈Γ
x 6=y

d(x, y)

|x− y|
.

If x and y belong to the same edge we see that d(x, y) = |x− y|. Therefore we can consider a
maximizing sequence (xn, yn)n∈N such that there exists α, β ∈ A with Γα ∩ Γβ = v ∈ V and
such that Γα and Γβ are not parallel, otherwise the conclusion of the �rst case also holds. See
Fig. A.1 for notations.

v

yn

xn

zn

αn

βn

Figure A.1 – The maximizing sequence.
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In the case where limn→∞ αn = 0 or limn→∞ βn = 0 it is clear that d(xn, yn) is close to
|xn − yn| and therefore C will be bounded. Hence we may assume, up to extracting a subse-
quence, that there exists some δ ∈ (0, π/2) such that π

2 ≥ αn, βn > δ for every n. Then we
will have

|xn − yn| = sin(αn)|xn − v|+ sin(βn)|yn − v| ≥ sin(δ)d(xn, yn).

Therefore C ≤ 1
sin(δ) . This concludes the proof.

�

A.2 Properties of function spaces

Proof A.2.1 (Proof of Proposition 2.2.3). Let (un)n∈N be a Cauchy sequence in (C k(Γ), ‖·‖C k(Γ)).
Then for every ε > 0 the exists Nε ∈ N such that for each α ∈ A we have

‖uα,n − uα,m‖C k([0,`α]) =
∑

0≤j≤k
‖∂juα,n − ∂juα,m‖L∞(0,`α) ≤ ‖un − um‖C k(Γ) < ε

for every n,m ≥ Nε. This mean that (uα,n)n∈N is a Cauchy sequence in Ck([0, `α]) for each
α ∈ A. We know that the spaces C k([0, `α]) are complete, hence each sequence (uα,n)n∈N
converges to some vα ∈ C k([0, `α]). We now de�ne v|Γα(x) = vα(π−1

α (x)) when x ∈ Γα.
To show that this function is well de�ned and belongs to C (Γ) notice that (un)n∈N is also a
Cauchy sequence in C (Γ), which we know to be complete, and hence must converge to some
function which coincides with v on Γα for everyα ∈ A. This implies that vmust be continuous
and that the value of v(π−1

α (vi)) does not depend on α for every i ∈ I . We have shown that
(un)n∈N converges to v in (C k(Γ), ‖·‖C k(Γ)) which is then complete. �

Proof A.2.2 (Proof of Proposition 2.2.7). We will need the following standard lemma.

Lemma A.2.1. Let I be a bounded interval in R and 0 < γ < θ ≤ 1. There is a compact
embedding from C 0,θ(I) to C 0,γ(I) and for u ∈ C 0,θ(I) we have

‖u‖C 0,γ(I) ≤ C‖u‖C 0,θ(I).

Proof. Let u ∈ C 0,θ(I) and x, y ∈ I then from the boundedness of I we have

|u(x)− u(y)|
|x− y|γ

=
|x− y|θ−γ

|x− y|θ−γ
|u(x)− u(y)|
|x− y|γ

≤ diam(I)θ−γ
|u(x)− u(y)|
|x− y|θ

which implies that
‖u‖C 0,γ(I) ≤ C‖u‖C 0,θ(I).

The compactness of the embedding the follows from Ascoli’s theorem ( [Dix84, Theorem 6.3.1]).
�
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Let us now turn to the proof of Proposition 2.2.7. Let un ∈ C 0,θ(Γ) be a bounded se-
quence and 0 < γ < θ. Then un,α ∈ C 0,θ([0, `α]) for every α ∈ A. By the compact em-
bedding between Hölder spaces obtained in Lemma A.2.1 we have un,α ∈ C 0,γ([0, `α]) and
‖un,α‖C 0,γ([0,`α]) ≤ Cα‖un,α‖C 0,θ([0,`α]) and there exists a uα ∈ C 0,γ([0, `α]) and a subse-
quence which we still denote (un,α)n∈N which converges to uα in C 0,γ([0, `α]). This de�nes
a function u ∈ PC(Γ) such that uα ∈ C 0,γ([0, `α]). To check that u is indeed continuous at
the junctions consider any vertex vi ∈ V and α, β ∈ Ai. Then

|u|Γα(vi)− u|Γβ (vi)| ≤ |u|Γα(vi)− un|Γα(vi)|+ |u|Γβ (vi)− un|Γα(vi)|
= |u|Γα(vi)− un|Γα(vi)|+ |u|Γβ (vi)− un|Γβ (vi)|

where we used the continuity of un at the junction and the last term converges to 0 asn tends to
in�nity. Therefore the sequence un convergences to u in C 0,γ(Γ) and the result is proved. �

Proof A.2.3 (First proof of Proposition 2.2.12). Let (un)n∈N be a Cauchy sequence inW k,p(Γ).
Then, as ‖vα‖Wk,p(0,`α) ≤ ‖v‖Wk,p(Γ), for each α ∈ A the sequence (uα,n)n∈N is a Cauchy se-
quence inW k,p(0, `α). This space being a Banach space, there exist functions vα ∈W k,p(0, `α)
which are the limits of uα,n as n tends to in�nity inW k,p(0, `α). From the standard Sobolev in-
equality [Bre11, Theorem 8.8] we haveun,α, vα ∈ C ([0, `α]) (notice that this impliesun,|Γα , v|Γα ∈
C (Γα)) and

‖v|Γα − un|Γα‖C (Γα) = ‖vα − un,α‖C ([0,`α]) ≤ C‖vα − un,α‖Wk,p(0,`α).

and taking the limit as n tends to in�nity shows that un,|Γα converges uniformly to v|Γα on
Γα. Then notice that for α, β ∈ Ai,

sup
x∈Γα∪Γβ

|v|Γα∪Γβ (x)− un|Γα∪Γβ (x)| = max
{
‖v|Γα − un|Γα‖C (Γα), ‖v|Γβ − un|Γβ‖C (Γβ)

}
and taking the limit as n tends to in�nity we �nd that we have in fact uniform convergence on
Γα ∪ Γβ . In particular we have

v|Γα(vi) = lim
x→vi
x∈Γα

v|Γα(x) = lim
x→vi
x∈Γβ

v|Γβ (x) = v|Γβ (vi)

for every i ∈ I and α, β ∈ Ai. This shows that v ∈ C (Γ). We have proved that un converges
to v in W k,p(Γ) which is thus a Banach space.

For Hk(Γ), consider the bilinear form

Hk(Γ)×Hk(Γ) 3 (u, v) 7→
k∑
j=0

∫
Γ
∂ku(x)∂kv(x) dx ∈ R.

One can easily see that this mapping de�nes a scalar product onHk(Γ) whose associated norm
is the norm de�ned in De�nition 2.2.10. �

Proof A.2.4 (Second proof of Proposition 2.2.12). We begin with the following lemma.
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Lemma A.2.2. Let a < b < c be real numbers and u : [a, c] → R be a function such that
u|[a,b] ∈W 1,p(a, b), u|[b,c] ∈W 1,p(b, c) and u is continuous at b. Then u ∈W 1,p(a, c).

Proof. First we clearly have ‖u‖Lp(a,c) <∞. Now let us compute the distributional derivative
of u on (a, c). For this consider φ ∈ C∞c (a, c). As we assume u(b−) = u(b+) we have∫ c

a
u(x)∂φ(x) dx =

∫ b

a
u|(a,b)(x)∂φ(x) dx+

∫ c

b
u|(b,c)(x)∂φ(x) dx

= φ(b)
(
u(b−)− u(b+)

)
−
∫ b

a
∂u|(a,b)(x)φ(x) dx−

∫ c

b
∂u|(b,c)(x)φ(x) dx

= −
∫ b

a
∂u|(a,b)(x)φ(x) dx−

∫ c

b
∂u|(b,c)(x)φ(x) dx.

Therefore we can de�ne

∂u(x) =

{
∂u|(a,b)(x) if x ∈ (a, b)

∂u|(b,c)(x) if x ∈ (b, c),

and we have obtained ∫ c

a
u(x)∂φ(x) dx = −

∫ c

a
∂u(x)φ(x) dx.

Which means that ∂u is indeed the distributional derivative of u on (a, c)1. From the assump-
tions on u, we also have ‖∂u‖Lp(a,c) <∞, which concludes the proof. �

De�ne the functions vα for each α ∈ A and v just as in the �rst proof. Recall that v satis�es
v|Γα ∈ C (Γα) for every α ∈ A. Choose i ∈ I and α, β ∈ Ai. We assume that vi is such that
vi = πα(0) = πβ(0) 2. We can parameterize Γα ∪ Γβ by the following continuous function

πα,β :

[0, `α + `β] → Γ

y 7→

{
πα(`α − y) if y ∈ [0, `α],

πβ(y − `α) if y ∈ [`α, `α + `β],

Notice that vi = πα,β(`α). The functions un being continuous on Γα ∪ Γβ , the function

uα,βn :
[0, `α + `β] → R

y 7→ un ◦ πα,β(y)

are well de�ned and continuous on [0, `α + `β]. Moreover (uα,βn )n∈N is a Cauchy sequence
in W 1,p(0, `α + `β) according to Lemma A.2.2 and they must thus converge to some wα,β ∈

1Continuity of u at b is a necessary assumptions for this to hold. Otherwise we need to add a Dirac at b and
the distributional derivative is not a function anymore.

2This is always possible as explained in Remark 2.1.1.
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W 1,p(0, `α + `β). By standard Sobolev inequalities we also have wα,β ∈ C ([0, `α + `β]). Then
we can de�ne the function

w :
Γα ∪ Γβ → R

x 7→ wα,β ◦ π−1
α,β(x)

which is then a continuous function on Γα ∪ Γβ . Moreover one also has

wα,β(y) = vα(`α − y) ∀y ∈ [0, `α],

wα,β(`α + y) = vβ(y) ∀y ∈ [0, `β].

This gives us
lim
x→vi
x∈Γα

v|Γα(x) = lim
x→vi
x∈Γα

w(x) = lim
x→vi
x∈Γβ

w(x) = lim
x→vi
x∈Γβ

v|Γβ (x)

which shows that v ∈ C (Γα ∪ Γβ). As we chose vi ∈ V , and α, β ∈ Ai arbitrarily, we have
shown that v ∈ C (Γ) and the result follows.

�

Proof A.2.5 (Proof of Proposition 2.2.13). The continuous injection follows from the continu-
ous embedding C (Γ) ↪→ Lq(Γ). Assume now that 1 ≤ q < ∞ and let (un)n∈N be a bounded
sequence in W 1,1(Γ). Then each sequence (uα,n)n∈N is a bounded sequence in W 1,1(0, `α).
Using once again [Bre11, Theorem 8.8] there exists a subsequence that we still denote (uα,n)n∈N
which converges to some uα in Lq(0, `α). Now we de�ne u(x) = uα ◦ π−1

α (x) for x ∈ Γα and
clearly un converges to u in Lq(Γ). This show that the embedding is compact. �

Proof A.2.6 (Proof of Proposition 2.2.15). Let u ∈ W 1,p(Γ), then by de�nition u ∈ C (Γ) and
‖u‖C (Γ) ≤ C1‖u‖W 1,p(Γ) by Proposition 2.2.13. We then also have uα ∈W 1,p(0, `α) for every
α ∈ A which by the standard Morrey inequality (see [Eva10, Theorem 4 p.282]) means that
uα ∈ C 0,θ([0, `α]) with 0 < θ ≤ 1− 1

p . Moreover one has ‖uα‖C 0,θ([0,`α]) ≤ Cα‖uα‖W 1,p(0,`α).
Hence

‖u‖C 0,θ(Γ) = ‖u‖C (Γ) + max
α∈A
‖uα‖C 0,θ([0,`α]) ≤ C1‖u‖W 1,p(Γ) + C2 max

α∈A
‖uα‖W 1,p(0,`α)

≤ C‖u‖W 1,p(Γ).

Thus u ∈ C 0,θ(Γ). The compact embedding the follows from there is a compact injection from
C 0,θ(Γ) into C 0,γ(Γ) for 0 < γ < θ in Proposition 2.2.7. �

A.3 Linear elliptic equations

Proof A.3.1 (Proof of Theorem 3.1.1). We only prove the �rst point the second one can be
proved in a very similar way.

First notice that the assumptions imply uα ∈ C 2(0, `α) ∩ C ([0, `α]), cα = 0 on (0, `α)
and Lαuα ≤ 0 on (0, `α). Hence that assumptions of the weak maximum principle ( [Eva10,
Theorem 1 p.346], [GT01, Theorem 3.1]) are ful�lled and we know that

max
y∈(0,`α)

uα(y) = max{uα(0), uα(`α)}.
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This is true for every α ∈ A and as maxx∈Γ u(x) = maxα∈Amaxy∈(0,`α) uα(y) and u ∈ C (Γ)
we obtain

max
x∈Γ

u(x) = max
x∈V

u(x).

�

Proof A.3.2 (Proof of Lemma 3.2.5). Without loss of generality we may assume θ ≤ γ. Let
x, y ∈ I , we have

|(u(x) + v(x))− (u(y) + v(y))| ≤ |u(x)− u(y)|+ |v(x)− v(y)|
≤ C1|x− y|θ + C2|x− y|γ

≤ C1|x− y|θ + C2|I|γ−θ|x− y|θ

≤ C|x− y|θ

for some positive constant C . This shows that (u+ v) ∈ C 0,θ(I). Also

|u(x)v(x)− u(y)v(y)| = |u(x)(v(x)− v(y))− v(y)(u(y)− u(x)|
≤ |u(x)||v(x)− v(y)|+ |v(y)||u(x)− u(y)|
≤ K1|x− y|γ +K2|x− y|θ

≤ K|x− y|θ,

which proves that uv ∈ C 0,θ(I).
Finally if u ≥ k > 0 for some constant k we have∣∣∣∣ 1

u(x)
− 1

u(y)

∣∣∣∣ =

∣∣∣∣u(y)− u(x)

u(x)u(y)

∣∣∣∣ ≤ |u(x)− u(y)|
k2

≤ |x− y|
θ

k2

which proves that 1
u ∈ C 0,θ(I). �

Proof A.3.3 (Proof of Theorem 3.2.9). We are going to use a Fredholm alternative argument.
First we know thanks to Theorem 3.2.3 that for λ0 large enough and any f ∈ H−1(Γ), the
problem

(A.1) �nd u ∈ H1(Γ) such that
B(u, v) + λ0(u, v)L2(Γ;ψ) = 〈f, v〉H−1,H1 for every v ∈ H1(Γ)

has a unique solution u ∈ H1(Γ) and ‖u‖H1(Γ ≤ C‖f‖H−1 . In what follows we denote

Bλ0(u, v) = B(u, v) + λ0(u, v)L2(Γ;ψ).

Then for λ0 large enough we can de�ne the continuous linear operator Aλ0 : H−1(Γ) →
H1(Γ) mapping f ∈ H−1(Γ) to the solutionu ∈ H1(Γ) of (A.1) and we have ‖Aλ0‖L(H−1(Γ),H1(Γ)) ≤
1
C . Notice that u ∈ H1(Γ) solves (E ′) if, and only if, it veri�es

Bλ0(u, v) = λ0(u, v)L2(Γ;ψ) + 〈f, v〉H−1,H1 ∀v ∈ H1(Γ),
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that is if and only if u = Aλ0(λ0u+ f) or equivalently

(A.2) (I − λ0Aλ0)u = Aλ0f.

Suppose u ∈ H−1(Γ) is such that (I − λ0Aλ0)u = 0, then u = λ0Aλ0u ∈ H1(Γ) and

Bλ0(u/λ0, v) = (u, v)L2(Γ;ψ) ∀v ∈ H1(Γ),

which is equivalent to
B(u, v) = 0 ∀v ∈ H1(Γ).

According to Lemma 3.2.8 this implies that u = 0 and hence N(I − λ0Aλ0) = {0}.
Since the injectionH1(Γ) ↪→ L2(Γ) ↪→ H−1(Γ) is compact according to Proposition 2.2.13,

we can extend Aλ0 into the operator Ãλ0 : H−1(Γ) → H−1(Γ) which is compact (see
[Bre11, Proposition 6.3]). Denote J the canonical compact operator associated with this in-
jection, we thus have Ãλ0 = J ◦ Aλ0 and as Jf = f for every f ∈ H−1(Γ) we also have
I − λ0Aλ0 = J ◦ (I − λ0Aλ0). Moreover as N(J) = {0} we clearly have N(I − λ0Ãλ0) =
N(I −λ0Aλ0) = {0} and the Fredholm alternative (see [Bre11, Theorem 6.6]) then states that
I − λ0Ãλ0 is a bijective bounded linear operator from H−1(Γ) into itself. In particular we can
de�ne the continuous linear operator (I − λ0Ãλ0)−1 : H−1(Γ) → H−1(Γ). Finally note if
g ∈ H1(Γ) then H−1(Γ) 3 w = (I − λ0Ãλ0)−1g if, and only if, (I − λ0Ãλ0)w = g which is
equivalent to w = g+ λ0Ãλ0w. As Ãλ0w ∈ H−1(Γ)∩H1(Γ) we must have w ∈ H1(Γ) and3

(A.3) ‖w‖H1(Γ) ≤ ‖g‖H1(Γ) + λ0‖Aλ0w‖H1(Γ) ≤ ‖g‖H1(Γ) + λ0K‖w‖W ?

Coming back to (A.2) we see that

u = (I − λ0Ãλ0)−1Aλ0f

is the unique weak solution of (E ′) and the continuity ofAλ0 and (I−λ0Ãλ0)−1 gives ‖u‖H−1 ≤
C‖f‖H−1 and from (A.3) we get

‖u‖H1(Γ) ≤ C ′‖f‖H−1 .

�

Proof A.3.4 (Proof of Proposition 3.2.10). We have Lu = f ≥ 0, therefore the weak maximum
principle 3.1.2 states that

min
x∈Γ

u(x) ≥ min
x∈V

u−(x)

If minx∈V u
−(x) = 0, the result is proved. Let us thus suppose that u−(vi) < 0 is minimal

for u for some i ∈ I . From the continuity of u there exists in a neighborhood of vi such
that u− = u on this neighborhood. Hence u− also satis�es the Kirchho� condition at vi and
Proposition 2.2.4 tells us that ∂αu−(vi) = 0 for every α ∈ Ai. From the continuity of the
coe�cients and the fact that u ∈ C 2(Γ) we have (assuming vi = πα(0))

−aα(0)∂2u−α (0) + cα(0)u−α (0) = fα(0) ≥ 0.

3As w ∈ H−1(Γ)∩H1(Γ) we can identify w with J−1w where J−1 is de�ned form J(H1(Γ)) ⊂ H−1(Γ)∩
H1(Γ) to H1(Γ).
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As we assume cα(0) > 0, and u−(vi) < 0 we have

∂2u−α (0) ≤ cα(0)u−α (0)

aα(0)
< 0.

This implies that u−α is strictly concave near 0 which contradicts the fact that vi is a minimum
point. Hence we must have minx∈Γ u(x) ≥ 0. �

Proof A.3.5 (Proof of Proposition 3.3.1). We write ∂φ = ‖∂φ‖L∞(Γ) and φ = minx∈Γ φ(x) >
0. Recall that Bλ(·, ·) = B(·, ·) + λ(·, ·)L2(Γ;φ). We have

Bλ(w,w) =

∫
Γ
a∂w∂(wφ)− bw∂(wφ) + λ|w|2φ dx

=

∫
Γ
a|∂w|2φ+ (a∂φ− bφ)w∂w − b|w|2∂φ+ λ|w|2φ dx

≥
∫

Γ
ω|∂w|2φ−

(
‖a‖L∞(Γ)

∂φ

φ
+ ‖b‖L∞(Γ)

)
|w∂w|φ+

(
λ− ‖b‖L∞

∂φ

φ

)
|w|2φ dx.

Therefore, if we denote K =
(
‖a‖L∞(Γ)

∂φ
φ + ‖b‖L∞(Γ)

)
we have

Bλ(w,w) ≥ ω‖∂w‖2L2(Γ,φ) +

(
λ− ‖b‖L∞(Γ)

∂φ

φ

)
‖w‖2L2(Γ;φ) −K

∫
Γ
|w∂w|φ dx.

And using Young’s inequality we �nd

Bλ(w,w) ≥
(
ω − εK

2

)
‖∂w‖2L2(Γ,φ) +

(
λ− ‖b‖L∞(Γ)

∂φ

φ
− K

2ε

)
‖∂w‖2L2(Γ;φ)

for every ε > 0. Hence we can choose ε > 0 small enough so that ω− εK
2 > 0 and then choose

λ = λ0 large enough to have λ− ‖b‖L∞(Γ)
∂φ
φ −

K
2ε > 0. Once we have done this there exists

a positive constant C such that

Bλ0(w,w) ≥ C(‖w‖2L2(Γ;φ) + ‖∂w‖2L2(Γ;φ)) = C‖w‖2Wφ
.

To conclude the proof it su�ces to apply the Lax-Milgram theorem.
�

Proof A.3.6 (Proof of Theorem 3.3.2). The argument is taken from [ADLT19, Theorem 2.7].
Existence : According to Proposition 3.3.1, for λ0 large enough, there exists a unique weak
solution ŵ ∈W to the following problem

(A.4)


−∂ (a∂w) + ∂ (bw) + λ0w = λ0h, on Γ \ V,
w|Γα (vi)
γi,α

=
w|Γβ (vi)

γi,β
, ∀α, β ∈ Ai, ∀i ∈ I,∑

α∈Ai a|Γα∂αw|Γα(vi)− ni,αw|Γα(vi)a|Γα(vi) = 0 ∀i ∈ I,
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for h ∈ L2(Γ) with ‖ŵ‖W ≤ λ0C‖h‖L2(Γ). Hence we may de�ne a continuous linear operator
T : L2(Γ)→W mapping h to ŵ. Now w ∈W is a weak solution of (3.6) if, and only if, it is a
�xed point of T . Therefore our goal here is to apply Schauder’s �xed point theorem.

We consider the following subset of L2(Γ)

K =

{
w ∈ L2(Γ) : w ≥ 0 and

∫
Γ
w dx = 1

}
.

We claim that T (K) ⊂ K . Indeed consider �rst the constant test-function v = 1. Then if we
multiply by v in the equation and integrate by parts we �nd∫

Γ
−∂(a∂w)v + ∂(bw)v + λ0wv dx = λ0

∫
Γ
wv dx = λ0

∫
Γ
hv dx

and we deduce that ∫
Γ
w dx =

∫
Γ
h dx.

Moreover let noww ∈W be a weak solution of (A.4) and considerw− its negative part. Notice
that w− also belongs to W . Then as ∂w∂w− = |∂w−|2 and ww− = |w−|2 we have

Bλ0(w,w−) =

∫
Γ
a|∂w−|2φ+ (a∂φ− bφ)w−∂w− − b|w−|2∂φ+ λ0|w−|2φ dx

= λ0

∫
Γ
hw− dx.

Notice that if h is nonnegative, then the last term is nonpositive while we can assume, up to
choosing an even larger λ0 by the same argument as in Proof A.3.5, that the left-hand side
is nonnegative. Therefore we must have w− = 0 which implies that w is nonnegative. This
proves our claim.

We now prove that K is precompact in L2(Γ). Indeed let h ∈ K and w = T (h) ∈ K ∩W .
Then from the coercivity of the bilinear form we have

C‖w‖2W ≤ Bλ0(w,w) =

∫
Γ
hwφ dx.

As wφ ∈ H1(Γ) and because we have the continuous injection H1(Γ) ↪→ L∞(Γ) we deduce
that there exists a positive constant M such that∫

Γ
hwφ dx ≤M‖wφ‖L∞(Γ)

∫
Γ
h dx = M‖w‖L∞ φ̄ ≤Mφ̄‖w‖W .

Hence we have
‖w‖W ≤

Mφ̄

C

which shows that T (K) is bounded in W . Now we know that there is a compact injection
H1(Γ) ↪→ L2(Γ) and a continuous injectionW ↪→ H1(Γ), given byW 3 w 7→ wφ. Therefore
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there exists a compact embedding W ↪→ L2(Γ). We can thus extend T to a compact linear
operator with values in L2(Γ) and T (K) is then precompact in L2(Γ).

Finally, noticing that K is convex, we are able to apply Schauder’s �xed point theorem
(see [GT01, Corollary 11.2]) to claim that T admits at least one �xed point. Which implies the
existence of a nonnegative solution of (3.6) satisfying

∫
Γw dx = 1 following to remark at the

beginning of the proof.
Uniqueness : We are going to apply Fredholm’s alternative. We consider the following

problem

(A.5)


−∂(a∂u)− b∂u+ λ0u = λ0g on Γ \ V,
u|Γα(vi) = u|Γβ (vi) ∀α, β ∈ Ai, i ∈ I,∑

α∈Ai γi,αa|Γα(vi)∂αu(vi) ∀i ∈ I.

According to Theorem 3.2.3, for λ0 large enough, the bilinear form A associated to (A.5) (see
(3.4)) is coercive and the problem has a unique weak solution u ∈ H1(Γ) such that ‖u‖H1(Γ) ≤
‖g‖L2(Γ). Therefore we can de�ne a continuous linear operator S : L2(Γ) → H1(Γ) which
can be extended to a compact linear operator S : L2(Γ) → L2(Γ) such that u = λ0Sg. Now
notice that for u ∈ H1(Γ) and w ∈W we have uψ ∈W , wφ ∈ H1(Γ) and

A(u,wφ) = B(w, uψ)

where B is the bilinear form de�ned in (3.9). Then using the fact that φψ = 1 we obtain

(Tf, λ0g)L2(Γ) = (φTf, λ0g)L2(Γ;ψ) = A(λ0Sg, φTf)

= B(λ0Tf, ψSg) = (λ0Tf, ψSg)L2(Γ;φ) = (λ0f, Sg)L2(Γ).

Therefore S = T ? in L2(Γ). From the Fredholm alternative (see [Bre11, Theorem 6.6]) we
have that dim ker(I − T ) = dim ker(I − T ?). And as ker(I − T ?) only contains the constant
constant functions (see Lemma 3.2.8), hence dim ker(I − T ?) = 1. Therefore

ker(I − λ0T ) = {w ∈W : w = µw0, w0 6= 0 ∈W,µ ∈ R}

and there only exists one such function such that
∫

Γw dx = 1. Finally noticing that any
solution of (3.6) belongs to ker(I − T ) this proves the uniqueness of the solution.

�

A.4 Linear parabolic equations

Proof A.4.1 (Proof of Lemma 4.1.2). Consider the following subspace of L2(Γ;ψ)

E = {u ∈ C∞(Γ) : uα ∈ C∞c ((0, `α), ∀α ∈ A} .

From the fact that C∞c ((0, `α)) is dense in L2(0, `α)) it is clear that E is dense in L2(Γ;ψ).
Moreover for every u ∈ E, we have u ∈ H2(Γ;ψ) and because every uα is compactly sup-
ported inside (0, `α) we see that the function umust cancel on a neighborhood of every vertex.
Therefore u must satisfy the Kircho� condition. This proves that E ⊂ D(L) and we conclude
that D(L) is dense in L2(Γ;ψ).

�
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Proof A.4.2 (Proof of Lemma 4.1.3). We �rst consider the operator Lλ0 = L + λ0I . Notice
that D(Lλ0) = D(L). Let (uk)k∈N be a sequence in D(L) converging to u ∈ L2(Γ;ψ) and
suppose that the sequence fk = Lλ0uk converges to some f in L2(Γ;ψ). We have to prove
that Lλ0u = f . By de�nition each uk is a weak solution of Lλ0uk = fk. We may choose λ0

large enough so that the bilinear form Bλ0 associated to Lλ0 is coercive. In this case we have
‖uk‖H1(Γ;ψ) ≤ C‖fk‖L2(Γ;ψ) (see Theorem 3.2.3) and from the regularity of weak solutions (see
Proposition 3.2.6) we also have ‖uk‖H2(Γ) ≤ C‖fk‖L2(Γ). As fk converges to f in L2(Γ;ψ)
this implies that (uk)k∈N is bounded in H2(Γ;ψ). From the re�exivity of H2(Γ;ψ) we deduce
that there exists a subsequence, which we still denote uk, that converges weakly to some ũ ∈
H2(Γ;ψ). Now we use the fact that Bλ0(·, v) belongs to H−2(Γ), the dual space of H2(Γ), for
every v ∈ H2(Γ) to obtain

B(ũ, v) = (Lũ, v)L2(Γ;ψ) = lim
k→∞

(Luk, v)L2(Γ;ψ) = (f, v)L2(Γ;ψ))

for every v ∈ H2(Γ), which proves that Lũ = f . Finally as uk converges to u in L2(Γ;ψ), we
must have ũ = u. Thus we indeed have Lλ0u = f . Finally as λ0I is a bounded linear operator
on L2(Γ;ψ) and L = Lλ0 − λ0I we conclude that L is also a closed linear operator. �

Proof A.4.3 (Proof of Theorem 4.2.2). Consider u0 ∈ L2(Γ) and f ∈ L2((0, T ), L2(Γ)). We
are going to use a regularization procedure. For this we introduce the following function

ρ ∈ C∞c (R), 0 ≤ ρ, supp(ρ) ⊂ (−1, 1),

∫
R
ρ(x) dx = 1

from which we de�ne the family

ρε(x) =
1

ε
ρ
(x
ε

)
, ∀ε > 0.

De�ne also

φεα ∈ C∞c ((0, `α)), 0 ≤ φεα ≤ 1,

φεα(s) = 1 ∀s ∈ [0, `α] \ ([0, 2ε) ∪ (`α − 2ε, `α]),

φεα(s) = 0 ∀s ∈ ([0, ε) ∪ (`α − ε, `α]),

for every α ∈ A. We then de�ne the function uε0 : Γ→ R by

uε0,α(x) = φεα(x) (ρε ∗ ū0,α(x)) , ∀x ∈ [0, `α]

where ū0,α is the extension by zero of u0,α to R. And

f ε(t, x) =

∫
R
ρ(t− s, x)f̃(s, x) ds

where

f̃(t, x) =

{
f(t, x) if 0 ≤ t ≤ T,
0 otherwise.
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Lemma A.4.1. For every ε > 0 the function uε0 belongs to C∞(Γ) ∩D(L) and

lim
ε→0
‖uε0 − u0‖L2(Γ) = 0.

Moreover we also have f ε ∈ C∞([0, T ], L2(Γ)) and

lim
ε→0
‖f ε − f‖L2((0,T ),L2(Γ)) = 0.

Proof. As u0,α ∈ L2(0, `α) we know that ū0,α ∈ L2(R) and it is then well-known that ρε ∗
ū0,α ∈ C∞(R) (see [Bre11, Proposition 4.20]). Then because φεα ∈ C∞c ((0, `α)) we have that
uε0,α ∈ C∞([0, `α]) and therefore uε0 ∈ C∞(Γ). Moreover uε0 cancels on a neighborhood of
every vertex, and thus it must satisfy the Kircho� condition in D(L). This proves the �rst
statement.

For the second one notice that it is enough to prove that

lim
ε→0
‖uε0,α − u0,α‖L2(0,`α) = 0.

for every α ∈ A. First we have

‖uε0,α − u0,α‖L2(0,`α) ≤ ‖φεα(ρε ∗ uε0,α − u0,α) + φεαu
ε
0,α − u0,α‖L2(0,`α)

≤ ‖ρε ∗ u0α − ū0,α‖L2(R) + ‖φεαu0,α − u0,α‖L2(0,`α).

because ‖φεα‖L∞(0,`α) ≤ 1. It is also well-known that (see [Bre11, Theorem 4.22] and [Bre11, p.
212])

lim
ε→0
‖ρεu0α − ū0,α‖L2(R) = 0,

lim
ε→0
‖φεαu0,α − u0,α‖L2(0,`α) = 0.

The result follows. The last statement also follows from [Bre11, Proposition 4.20, Proposition
4.22] noting that

‖f ε − f‖2L2((0,T ),L2(Γ)) =

∫ T

0

∫
Γ
|f ε(t, x)− f(t, x)|2 dxdt

=

∫
Γ

∫ T

0
|f ε(t, x)− f(t, x)|2 dtdx.

�

Using Lemma A.4.1 and Corollary 4.1.5 we �nd that there exists a unique semigroup solu-
tion

uε ∈ C 1((0, T ), L2(Γ)) ∩ C ([0, T ), H2(Γ))

to

(A.6)


∂tu

ε(t, x) + Luε(t, x) = f ε(t, x) for t ∈ (0, T ), x ∈ Γ \ V,∑
α∈Ai γi,ασ

2
|Γα(vi)∂αuε(t, vi) = 0 ∀i ∈ I for every t ∈ (0, T ),

uε|Γα(t, vi) = uε|Γβ (t, vi) ∀α, β ∈ Ai, ∀i ∈ I for every t ∈ (0, T ),

uε(0, ·) = uε0.
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Moreover according to Theorem 4.1.6 we have

‖uε‖L2(0,T,H1(Γ)) + ‖∂tuε‖L2(0,T,H−1(Γ)) ≤ C
(
‖uε0‖L2(Γ) + ‖f ε‖L2((0,T ),L2(Γ))

)
≤ C

(
‖u0‖L2(Γ) + ‖f‖L2((0,T ),L2(Γ))

)
Using the re�exivity of L2(0, T,H1(Γ)) and L2(0, T,H−1(Γ)) we know that (see [Bre11, The-
orem 3.18]) we �nd a sequence (un)n∈N such that{

un ⇀ u weakly in L2(0, T,H1(Γ)),

∂tu
n ⇀ v weakly in L2(0, T,H−1(Γ)).

Then we have for φ ∈ C∞c ((0, T ), H1(Γ))∫ T

0
〈u(t, ·), ∂tφ(t, ·)〉H−1,H1 dt = lim

n→∞

∫ T

0
〈un(t, ·), ∂tφ(t, ·)〉H−1,H1 dt

= lim
n→∞

−
∫ T

0
〈∂tun(t, ·), φ(t, ·)〉H−1,H1 dt

= −
∫ T

0
〈v(t, ·), φ(t, ·)〉H−1,H1 dt

which proves that v = ∂tu in the sense of distributions. Now recall from (4.7) that

(∂tu
n(t, ·), v)L2(Γ;ψ) +B(un(t, ·), v) = (fn(t, ·), v)L2(Γ;ψ)

for every v ∈ H1(Γ;ψ) taking the weak limit (using also Lemma A.4.1 we �nd

(∂tu(t, ·), v)L2(Γ;ψ) +B(u(t, ·), v) = (f(t, ·), v)L2(Γ;ψ)

for every v ∈ H1(Γ;ψ).
Choosing now v ∈ C 1([0, T ], H1(Γ;ψ)) such that v(T, ·) = 0 and integrating by parts

with respect to time we �nd that

−
∫ T

0
(un(t, ·), ∂tv(t, ·))L2(Γ;ψ) +B(un(t, ·), v(t, ·)) dt

=

∫ T

0
(fn(t, ·), v(t, ·))L2(Γ;ψ) dt+ (un(0, ·), v(0, ·))L2(Γ;ψ)

=

∫ T

0
(fn(t, ·), v(t, ·))L2(Γ;ψ) dt+ (un0 , v(0, ·))L2(Γ;ψ).

Once again taking the weak limit we �nd that

−
∫ T

0
(u(t, ·), ∂tv(t, ·))L2(Γ;ψ) +B(u(t, ·), v(t, ·)) dt

=

∫ T

0
(f(t, ·), v(t, ·))L2(Γ;ψ) dt+ (u0, v(0, ·))L2(Γ;ψ).
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Finally doing the same integration by parts directly on u gives

−
∫ T

0
(u(t, ·), ∂tv(t, ·))L2(Γ;ψ) +B(u(t, ·), v(t, ·)) dt

=

∫ T

0
(f(t, ·), v(t, ·))L2(Γ;ψ) dt+ (u(0, ·), v(0, ·))L2(Γ;ψ).

As v is arbitrary and comparing the two last equations we deduce that u(0, ·) = u0 in L2(Γ).
This proves that u is indeed a weak solution of the problem. �

Proof A.4.4 (Proof of Theorem 4.3.1).

Lemma A.4.2. There exists a positive constant λ0 such that the bilinear form de�ned by

B̂λ0(u, v) = B̂(u, v) + λ0(u, v)L̂2(Γ;ψ) ∀(u, v) ∈ Ĥ1(Γ;ψ)× Ĥ1(Γ;ψ)

satis�es
|B̂λ0(u, u)| ≥ C‖u‖Ĥ1(Γ;ψ).

Proof. First notice that |B(u, u)| ≥ <(B(u, u)). Then as

<(B(u, u)) = <
[∫

Γ
a∂u∂(ūψ) + b̃∂uūψ + (c+ λ0)|u|ψ dx

]
≥
∫

Γ
ω|∂u|2ψ − (‖a∂ψ‖L∞(Γ) + ‖b̃‖L∞(Γ;ψ))|u∂u|+ λ0|u|2ψ dx

we �nd that <(B(u, u)) ≥ C‖u‖Ĥ1(Γ,ψ) for some positive constant C and λ0 large enough
using the same arguments as in Theorem 3.2.3. �

Lemma A.4.3. Let λ0 be such that the conclusion of Lemma A.4.2 holds. Then the operator

−L− λ0I

satis�es [0,+∞) ⊂ ρ(−L− λ0).

Proof. Let λ ≥ 0. Then the bilinear form

B̂λ(u, v) = B̂λ0(u, v) + λ(u, v)L̂2(Γ;ψ)

is the bilinear form associated to the di�erential operatorλI+L+λ0I . According to Lemma A.4.2
it is coercive and hence applying the complex Lax-Milgram theorem ( [Bre11, Proposition
11.29]) we �nd that λI + L + λ0I is invertible with continuous inverse, and hence λ ∈
ρ(−L− λ0I). �

According to Lemma A.4.2 there exists a positive constant λ0 such that

<
[
((L+ λ0I)u, u)L̂2(Γ;ψ)

]
= <

[
B̂λ0(u, u)

]
≥ C‖u‖2

Ĥ1(Γ;ψ)
≥ C‖u‖2

L̂2(Γ;ψ)
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for every u ∈ D(L) and some positive constant C . Notice also that

|=[((L+ λ0I)u, u)L̂2(Γ;ψ)]| ≤ |B̂λ0(u, u)| ≤ C ′‖u‖2
L̂2(Γ;ψ)

for every u ∈ D(L) and some positive constant C ′. Choosing u ∈ D(L) with ‖u‖L̂2(Γ;ψ) = 1
we �nd that there exists 0 < θ < π

2 such that the numerical range of −L − λ0I (see De�ni-
tion B.2.3 and Remark B.2.4) veri�es

S(−L− λ0I) ⊂ Sθ = {λ ∈ C : π − θ < arg λ < π + θ} .

Moreover we can also choose θ < η < π
2 (see Fig. A.2) so that

Ση = {λ ∈ C : π − η < arg λ < π + η}c

and there exists a constant Cη such that

d(λ, S(−L− λ0I)) ≥ Cη|λ| ∀λ ∈ Ση.

Furthermore from Lemma A.4.3 we know that [0,+∞) ⊂ ρ(−L − λ0I). This implies that
ρ(−L − λ0I) ∩ Ση 6= ∅ and by Proposition B.2.5 we have Ση ⊂ ρ(−L − λ0I) and for every
λ ∈ ρ(−L− λ0I) we have

‖Rλ‖L (L̂2(Γ;ψ)) ≤
1

d(λ, S(−L− λ0I))
≤ 1

Cη|λ|
We can now apply Theorem B.2.2 to obtain that −L− λ0I is the in�nitesimal generator of an
analytic semigroup on L2(Γ;ψ). Finally as λ0I is a bounded linear operator we deduce from
Theorem B.2.6 that −L = −L − λ0I + λ0I is also the in�nitesimal generator of an analytic
semigroup.

0 <(λ)

=(λ)

−C

−C ′

C ′

Sθ

Ση

Figure A.2 – The sector Sθ is represented between the two dashed lines and the sector Ση

between the two continuous lines.
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A.5 Stochastic processes

Proof A.5.1 (Proof of Lemma 5.1.2). Consider �rst the set

D =
{
u ∈ C 2(Γ) : Lu ∈ C (Γ), ∂uα(0) = ∂uα(`α) = 0 for every α ∈ A

}
and notice that D ⊂ D(L). Moreover if u is a constant function on Γ, then u ∈ D and if
u, v ∈ D, then u+ v ∈ D. Furthermore we have for every u, v ∈ D that

L(uv)(x) = u(x)Lv(x) + v(x)Lu(x) + 2σ2(x)∂u(x)∂v(x)

which shows that uv ∈ D. It is also clear that the elements of D separate the points in Γ.
Hence we can apply the Stone-Weierstrass theorem (see [Dix84, Theorem 7.5.3]) and we have
that D is dense in C (Γ) which implies that D(L) is dense in C (Γ). �

Proof A.5.2 (Proof of Lemma 5.1.3). Let (un)n∈N be a sequence inD(L) such that un converges
to some u ∈ C (Γ) and Lun converges to some f in C (Γ). According to Theorem 3.2.3 and
Proposition 3.2.6 the operator (λI − L) is invertible with continuous inverse for λ > 0 and is
bijective from D(L) to C (Γ). Then we have

un = (λI − L)−1(λun − Lun)

and taking the limit as n tends to in�nity gives

u = (λI − L)−1(λu− f)

which can be rewritten
λu− Lu = λu− f.

This implies that Lu = f and therefore L is closed.
�

Proof A.5.3 (Proof of Lemma 5.1.4). According to Theorem 3.2.9 and Proposition 3.2.6 we know
that for every f ∈ C (Γ) there exists a unique uλ ∈ D(Γ) such that (λI −L)uλ = f for every
λ > 0. This proves the �st part of the lemma. Then we denote (Rλ)λ>0 the resolvent that
maps f to (uλ)λ>0. Now �x λ > 0 and denote x̄ = argmaxx∈Γ uλ(x), x = argminx∈Γ uλ(x)
and notice that

‖f‖C (Γ) ≥ max{(λI − L)uλ(x̄),−(λI − L)uλ(x)}.

Moreover
(λI − L)uλ(x̄) = λuλ(x̄)− σ2(x̄)∂2uλ(x̄) ≥ λuλ(x̄)

and
−(λI − L)uλ(x) = −λuλ(x) + σ2(x)∂2uλ(x) ≥ −λuλ(x),
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is direct if x̄, x ∈ Γ \ V . In the case where one of x̄ or x is a vertex, we obtain the same result
using Proposition 2.2.4. Therefore as ‖uλ‖C (Γ) = max{uλ(x̄),−uλ(x)} we have obtained

‖uλ‖C (Γ) ≤
‖f‖C (Γ)

λ
,

that is
‖Rλ‖L (C (Γ)) ≤

1

λ
.

�
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Appendix B

Semigroups of bounded linear
operators

This section contains the basic facts about strongly continuous semigroups of bounded linear
operators in Banach spaces and the statement of the Hille-Yosida theorem. We follow [Paz83]
were the reader can �nd the proofs of the results presented here.

B.1 First de�nitions and the Hille-Yosida theorem

De�nition B.1.1. A family (Tt)t≥0 of bounded linear operator from Banach spaceX into itself
is called a semigroup of bounded linear operators if it satis�es

1. T0 = I ,

2. for every s, t ≥ 0 we have Ts+t = Ts ◦ Tt.

Furthermore a semigroup (Tt)t≥0 of bounded linear operators onX is said to be a strongly
continuous semigroup, or a C0-semigroup, if

lim
t→0
‖Ttx− x‖X = 0

for every x ∈ X .
Finally a semigroup (Tt)t≥0 is said to be uniformly bounded if there exists a positive con-

stant M such that
‖Tt‖L (X) ≤M

for every t ≥ 0. /

Remark B.1.2. For simplicity we will always write TsTt for Ts ◦ Tt.

De�nition B.1.3. Let (Tt)t≥0 be a semigroup of bounded linear operator on X . We de�ne the
unbounded linear operator A on the domain

X ⊃ D(A) =

{
x ∈ X : lim

t→0

Ttx− x
t

exists
}
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by
Ax = lim

t→0

Ttx− x
t

, x ∈ D(L).

The operator A is called the in�nitesimal generator of a strongly continuous semigroup on X .
/

Proposition B.1.4 ( [Paz83], Theorem 1.2.4). Let (Tt)t≥0 be a strongly continuous semigroup
and let L be its in�nitesimal generator. Then for every x ∈ D(A) we have Ttx ∈ D(L), the
mapping t 7→ Ttx is di�erentiable and

d

dt
Ttx = ATtx = TtAx,

PropositionB.1.5 ( [Paz83], Theorem 1.2.6). Let (Tt)t≥0 and (St)t≥0 be two strongly continuous
semigroups of bounded linear operators sharing the same in�nitesimal generator L with identical
domain D(L). Then Tt = St for every t ≥ 0.

De�nition B.1.6. A strongly continuous semigroup of bounded linear operators (Tt)t≥0 is said
to be a strongly continuous semigroup of contraction if ‖Tt‖L (X) ≤ 1 for every t ≥ 0. /

De�nition B.1.7. Let A be an unbounded linear operator on X . The resolvent set ρ(A) of
A is the set of all real numbers λ such that (λI − A) is invertible and Rλ = (λI − A)−1 is
a bounded linear operator. Moreover the familly of bounded linear operators (Rλ)λ∈ρ(A) is
called the resolvent of A. /

We are now able to state the Hille-Yosida theorem.
Theorem B.1.8 (Hille-Yosida, Theorem 1.3.1 [Paz83]). An unbounded linear operator A is the
in�nitesimal generator if a strongly continuous semigroup of contraction (Tt)t≥0 if, and only if

1. L is closed and D(A) is dense in X ,

2. The resolvent set ρ(A) contains (0,∞) and for every λ > 0 we have

‖Rλ‖L (X) ≤
1

λ
.

Corollary B.1.9 ( [Paz83], Corollary 1.3.8). An unbounded linear operatorA is the in�nitesimal
generator if a strongly continuous semigroup of (Tt)t≥0 satisfying ‖Tt‖L (X) ≤ eωt if, and only
if

1. A is closed and D(A) is dense in X ,

2. The resolvent set ρ(A) contains (ω,∞) and for every λ > ω we have

‖Rλ‖L (X) ≤
1

λ− ω
.

Theorem B.1.10 ( [Paz83], Theorem 1.8.3). Let (Tt)t≥0 be a strongly continuous semigroup of
contraction and let (Rλ)λ>0 be the resolvent associated to its in�nitesimal generator. Then for
every x ∈ X we have

Ttx = lim
n→∞

(n
t
Rn/t

)n
x,

and the limit is uniform in t on any bounded interval.
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B.2 Analytic semigroups

De�nition B.2.1. Let ∆ = {z ∈ C : θ1 < arg(z) < θ2, θ1 < 0 < θ2} and for every z ∈ ∆ let
Tz be a bounded linear operator on X . The family (Tz)z∈∆ is called an analytic semigroup in
∆ if

1. ∆ 3 z 7→ Tz is analytic in ∆,

2. T0 = I and
lim
z→0
z∈∆

Tzx = x

for every x ∈ X ,

3. Tz1+z2 = Tz1Tz2 for every z1, z2 ∈ ∆.

A semigroup (Tt)t≥0 will be called analytic if it can be extended to an analytic semigroup in
some sector ∆ containing [0,+∞). /

Theorem B.2.2 ( [Paz83], Theorem 2.5.2). Let (Tt)t≥0 be an uniformly bounded strongly con-
tinuous semigroup on X . Let A be its in�nitesimal generator, assume 0 ∈ ρ(A) and denote
(Rλ)λ∈ρ(A) the resolvent associated to A. Then the following statements are equivalent

1. the semigroup (Tt)t≥0 can be extended to an analytic semigroup,

2. There exist constants 0 < δ < π
2 andM > 0 such that

ρ(A) ⊃ Σ =
{
λ ∈ C : |arg λ| < π

2
+ δ
}
∪ {0}

and
‖Rλ‖L (X) ≤

M

|λ|
for λ ∈ Σ, λ 6= 0.

3. (Tt)t≥0 is di�erentiable for T > 0 and there is a constant C such that

‖ATt‖L (x) ≤
C

t

for t > 0.

De�nition B.2.3. The numerical range of an unbounded linear operator A is de�ned as

S(A) = {〈f,Ax〉X?,X : x ∈ D(A), ‖x‖X = 1, ‖f‖X? = 1, 〈f, x〉X?,X = 1} .

/

Remark B.2.4. Let H be an Hilbert space and A an unbounded linear operator on H then we
have

S(A) = {(Au, u)H : u ∈ D(A), ‖u‖H = 1} .
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PropositionB.2.5 ( [Paz83], Theorem 1.3.9). LetA be a closed linear operator with dense domain
D(A) in X . Let S(A) be the numerical range of A and let Σ be the complement of S(A) in C.
If λ ∈ Σ then λI − A invertible with continuous inverse. Moreover, if Σ0 is a component of Σ
satisfying ρ(A) ∩ Σ0 6= ∅ then Σ0 ⊂ ρ(A) and the resolvent (Rλ)λ∈ρ(A) satis�es

‖Rλ‖L (X) ≤
1

d(λ, S(A))
.

Theorem B.2.6 ( [Paz83], Corollary 3.2.2). Let A be the in�nitesimal generator of an analytic
semigroup. If B is a bounded linear operator onX then A+B is also the in�nitesimal generator
of an analytic semigroup.

B.3 Abstract Cauchy problems

In this section we want to consider the problem of �nding a function u : X → X satisfying

(B.1)
{
u′(t) = Au(t) + f(t) ∀t > 0

u(0) = u0

whereA is an unbounded linear operator onX with domainD(A) ⊂ X and f : (0,+∞)→ X
is a given functions and u0 ∈ X .

B.3.1 The homogeneous problem

We �rst give results concerning the following homogeneous problem

(B.2)
{
u′(t) = Au(t) ∀t > 0

u(0) = u0

Theorem B.3.1 ( [Paz83], Theorem 4.1.3). AssumeA is the in�nitesimal generator of a strongly
continuous semigroup (Tt)t≥0 on X . Then if u0 ∈ D(A) there is a unique solution

u ∈ C 1([0,∞), X) ∩ C ([0,∞), D(A))

to the homogeneous problem (B.2) given by u(t) = Ttu0.

TheoremB.3.2 ( [Paz83], Corollary 4.1.5). AssumeA is the in�nitesimal generator of an analytic
semigroup (Tt)t≥0 on X . Then for every u0 ∈ X there is a unique solution

u ∈ C 1((0,∞), X) ∩ C ((0,∞), D(A)) ∩ C ([0,∞), X)

to the homogeneous problem (B.2) given by u(t) = Ttu0.
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B.3.2 The inhomogeneous problem

We no turn to solutions of (B.1).

Theorem B.3.3 ( [Paz83], Corollary 4.2.5). AssumeA is the in�nitesimal generator of a strongly
continuous semigroup (Tt)t≥0 onX . If f ∈ C 1([0, T ], X) and u0 ∈ D(A) then (B.1) as a unique
solution

u ∈ C 1((0, T ), X) ∩ C ([0, T ), D(A))

given by

u(t) = Ttu0 +

∫ t

0
Tt−sf(s) ds ∀t ∈ [0, T ).

TheoremB.3.4 ( [Paz83] Corollary 4.3.3). AssumeA is the in�nitesimal generator of an analytic
semigroup (Tt)t≥0 on X . If f ∈ W 1,∞((0, T ), X) then for every u0 ∈ X there exists a unique
solution of (B.1)

u ∈ C 1((0, T ), X) ∩ C ((0, T ), D(A)) ∩ C ([0, T ), X)

given by

u(t) = Ttu0 +

∫ t

0
Tt−sf(s) ds ∀t ∈ [0, T ).

B.3.3 Semilinear problems

We now consider semilinear problems of the form

(B.3)
{
u′(t) +Au(t) = f(t, u) ∀t ∈ (0, T ),

u(t0) = u0.

For this purpose we give some results on fractional powers of linear operator. We follow
[Paz83, Section 2.2.6] were the reader can �nd the profs of the results stated here as well as a
more in-depth presentation.

In what follows we assume that the unbounded linear operator A satis�es the following
assumption.
Assumption 6. The operator A is a densely de�ned closed linear operator such that

ρ(A) ⊃ Σ+ = {λ ∈ C : 0 < ω < |arg λ| ≤ π} ∪ V

where V is a neighborhood of zero, and

‖Rλ‖L (X) ≤
M

1 + |λ|
∀λ ∈ Σ+.

/

Let α ∈ (0, 1), then on can de�ne a linear operator Aα on a domain D(Aα) ⊃ D(A) (see
[Paz83, Section 2.2.6] for the details of the construction). The following proposition summarizes
the basic properties of this operator.
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Proposition B.3.5. Let α, β ∈ (0, 1). Then

1. the operator Aα is closed and densely de�ned in X ,

2. if α ≥ β then D(Aα) ⊂ D(Aβ),

3. If α+ β < 1 then
Aα+βx = AαAβx

for every x ∈ D(Aα+β) 1,

4. If x ∈ D(A) then

Aαx =
sin(πα)

π

∫ ∞
0

tα−1A(tI +A)−1xdt.

The following theorem will be important for the study of semilinear parabolic equations.

Theorem B.3.6. Let B be a closed linear operator satisfying D(B) ⊃ D(A). If for some γ ∈
(0, 1) and every η ≥ η0 > 0 we have

‖Bx‖X ≤ C(ηγ‖x‖X + ηγ−1‖Ax‖X) ∀x ∈ D(A),

then D(Aα) ⊂ D(B) for every γ < α ≤ 1.

Finally we de�ne the Banach space Xα as the set D(Aα) ⊂ X provided with the graph
norm of Aα.

We have to make an assumption on the function f .
Assumption 7. Let U be an open subset of R+ ×Xα. The function f : U → X is such that
for every (t, x) ∈ U there is a neighborhood V ⊂ U and constants L ≥ 0, 0 < θ ≤ 1 such that

‖f(t1, x1)− f(t2, x2)‖X ≤ L(|t1 − t2|θ + ‖x1 − x2‖Xα) ∀(ti, xi) ∈ V.

/

We now state the main existence result for semilinear problems (see [Paz83, Theorem 6.3.1]
or [Hen81, Theorem 3.3.3]).

Theorem B.3.7. Let −A be the in�nitesimal generator of an analytic semigroup (Tt)t≥0 sat-
isfying ‖Tt‖L (X) ≤ M and assume further that 0 ∈ ρ(−A). If α ∈ (0, 1) and f satis�es
Assumption 7 then for every initial data (t0, u0) ∈ U the initial value problem

(B.4)
{
u′(t) +Au(t) = f(t, u) ∀t ∈ (t0, T ),

u(t0) = u0.

has a unique solution

u ∈ C ([t0, t1), X) ∩ C 1((t0, t1), X) ∩ C ((t0, t1), D(A))

1In fact one can de�ne fractional powers of linear operators for any α ∈ R and the result remains true in this
case, see [Paz83, Section 2.2.6].

77



for some t1 > t0. Furthermore we have for every t ∈ (t0, t1) and

u(t) = Tt−t0u0 +

∫ t

t0

Tt−sf(s, u(s)) ds.

Furthermore we under the right growth condition on f we can obtain a global existence and
uniqueness result, see [Paz83, Theorem 6.3.3], [Hen81, Corollary 3.3.5]. The second statement
is a consequence of [Hen81, Lemma 3.5.1]

Theorem B.3.8. Let−A be the in�nitesimal generator of an analytic semigroup (Tt)t≥0 satisfy-
ing ‖Tt‖L (X) ≤M and assume further that 0 ∈ ρ(−A). If α ∈ (0, 1) and f : [t0,+∞)×Xα →
X satis�es Assumption 7 and if there exists a continuous nondecreasing function k : [t0,+∞)→
R+ such that

‖f(t, u)‖X ≤ k(t)(1 + ‖u‖Xα) ∀t ∈ [t0,+∞), ∀u ∈ Xα.

Then for every u0 ∈ Xα the initial value problem

(B.5)
{
u′(t) +Au(t) = f(t, u) ∀t ∈ (t0, T ),

u(t0) = u0.

has a unique solution for every T > t0. Moreover if k is a constant then u′ is locally Hölder
continuous with values in Xγ for 0 < θ < γ for every t ∈ (0, T ).
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